
RxDock Documentation
Release 0.1.0

RxDock development team

Aug 11, 2023

CONTENTS

1 About 3
1.1 Download . 3
1.2 Features . 3
1.3 History . 5
1.4 License . 5
1.5 Contributor concordat . 7
1.6 References . 8

2 Getting started guide 9
2.1 Overview . 9
2.2 Quick and dirty installation . 9
2.3 Prerequisites . 38
2.4 Unpacking the distribution files . 39
2.5 Building . 41
2.6 Validation experiments . 42

3 Reference guide 45
3.1 Preface . 45
3.2 Acknowledgements . 45
3.3 Introduction . 45
3.4 Configuration . 46
3.5 Cavity mapping . 46
3.6 Scoring functions . 58
3.7 Docking protocol . 64
3.8 System definition file . 69
3.9 Molecular files and atom typing . 77
3.10 File formats . 79
3.11 Programs . 81
3.12 Appendix . 90

4 User guide 95
4.1 Docking in 3 steps . 95
4.2 Docking strategies . 96
4.3 Multi-step protocol for HTVS . 99
4.4 Calculating ROC curves . 102
4.5 Running docking jobs in parallel . 106
4.6 Pharmacophoric restraints . 108

5 Developer guide 113
5.1 Target platforms . 113

i

5.2 Build system . 114
5.3 Coding standards . 115
5.4 Documentation . 116
5.5 Versioning . 116

6 Support 117
6.1 Mailing lists . 117
6.2 Issue tracker . 117

Bibliography 119

ii

RxDock Documentation, Release 0.1.0

RxDock is a fast and versatile open-source docking program that can be used to dock small molecules against pro-
teins and nucleic acids. It is designed for high-throughput virtual screening (HTVS) campaigns and binding mode
prediction studies.

RxDock is mainly written in C++ and accessory scripts and programs are written in C++, Perl or Python languages.

The full RxDock software package requires less than 50 MB of hard disk space and it is compilable (at this moment,
only) in all Linux computers.

Thanks to its design and implementation [rDock2014], it can be installed on a computation cluster and deployed on an
unlimited number of CPUs, allowing HTVS campaigns to be carried out in a matter of days.

Besides its main Docking program, the RxDock software package also provides a set of tools and scripts to facilitate
preparation of the input files and post-processing and analysis of results.

CONTENTS 1

RxDock Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

ABOUT

1.1 Download

Please visit RxDock GitLab page for most up to date releases.

• Download a released version

• Get the latest code using git

1.2 Features

Fig. 1.1: The above image illustrates the first binding mode solution for ASTEX system 1hwi, with an RMSD of 0.88
Å.

Docking preparation
Define cavities using known binders or with user-supplied 3D coordinates. Allow -OH and -NH2 receptor side

3

https://gitlab.com/rxdock/rxdock/-/releases
https://gitlab.com/rxdock/rxdock

RxDock Documentation, Release 0.1.0

chains to rotate. Add explicit solvent molecules and structural waters. Supply pharmacophoric restraints as a
bias to guide docking.

Pre-processing of input files
Define common ligand structure for performing tethered docking (requires Open Babel Python bindings). Sort,
filter or split ligand files for facilitating parallelization. Find HTVS protocol for optimizing calculation time.
Pre-calculate grids to decrease subsequent calculation times.

Post-processing and analysis of results
Summarize results in a tabular format. Sort, filter, merge or split results files. Calculate RMSD with a reference
structure taking into account internal symmetries (requires Open Babel Python bindings).

Binding mode prediction
Predict how a ligand will bind to a given molecule. The ASTEX non-redundant test set for proteins and DOCK
and RxDock test sets for RNA have been used for validating and comparing RxDock with other programs.

High-throughput virtual screening
Run for million of compounds in short time by exploiting the capabilities of computer calculation farms. Ease
of parallelization in relatively unlimited CPUs to optimize HTVS running times. The DUD set has been used
for validating RxDock and comparing its performance to other reference docking programs.

Fig. 1.2: In red mesh, definition of the cavity obtained by execution of rbcavity program.

4 Chapter 1. About

RxDock Documentation, Release 0.1.0

1.3 History

The RiboDock program was developed from 1998 to 2006 by the software team at RiboTargets (subsequently Vernalis
(R&D) Ltd) [RiboDock2004]. In 2006, the software was licensed to the University of York for maintenance and
distribution under the name rDock.

In 2012, Vernalis and the University of York agreed to release the program as open-source software [rDock2014]. This
version is developed with support from the University of Barcelona – sourceforge.net/projects/rdock.

The development of rDock stalled in 2014. Since 2019, RxTx is developing a fork of rDock under the name RxDock.

1.4 License

RxDock is licensed under GNU LGPL version 3.0.

1.4.1 GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL”
refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as
defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based
on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided
by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular
version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work,
excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application,
and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Ap-
plication, including any data and utility programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work.

1.3. History 5

https://www.vernalis.com/
https://www.vernalis.com/
http://www.ysbl.york.ac.uk/
http://www.ub.edu/cbdd/
https://sourceforge.net/projects/rdock/
https://rxtxresearch.github.io/
https://fsf.org/

RxDock Documentation, Release 0.1.0

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU
GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied
by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may
convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does
not supply the function or data, the facility still operates, and performs whatever part of its purpose remains
meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You
may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to
numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its
use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modi-
fication of the portions of the Library contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library
and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the
Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this
license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Ap-
plication Code in a form suitable for, and under terms that permit, the user to recombine or relink the
Application with a modified version of the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a)
uses at run time a copy of the Library already present on the user’s computer system, and (b) will operate
properly with a modified version of the Library that is interface-compatible with the Linked Version.

6 Chapter 1. About

RxDock Documentation, Release 0.1.0

e) Provide Installation Information, but only if you would otherwise be required to provide such information under
section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a
modified version of the Combined Work produced by recombining or relinking the Application with a modified
version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Mini-
mal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the
Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other
library facilities that are not Applications and are not covered by this License, and convey such a combined library
under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other
library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered
version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of follow-
ing the terms and conditions either of that published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public
License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software
Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General
Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for
you to choose that version for the Library.

1.5 Contributor concordat

RxDock adheres both to No Code of Conduct and Code of Merit.

1.5.1 Contributor Code of Conduct

This project adheres to No Code of Conduct. We are all adults. We accept anyone’s contributions. Nothing else matters.

For more information please visit the No Code of Conduct homepage.

1.5. Contributor concordat 7

https://github.com/domgetter/NCoC

RxDock Documentation, Release 0.1.0

1.5.2 Code of Merit

1. The project creators, lead developers, core team, constitute the managing members of the project and have final
say in every decision of the project, technical or otherwise, including overruling previous decisions. There are
no limitations to this decisional power.

2. Contributions are an expected result of your membership on the project. Don’t expect others to do your work or
help you with your work forever.

3. All members have the same opportunities to seek any challenge they want within the project.

4. Authority or position in the project will be proportional to the accrued contribution. Seniority must be earned.

5. Software is evolutive: the better implementations must supersede lesser implementations. Technical advantage
is the primary evaluation metric.

6. This is a space for technical prowess; topics outside of the project will not be tolerated.

7. Non technical conflicts will be discussed in a separate space. Disruption of the project will not be allowed.

8. Individual characteristics, including but not limited to, body, sex, sexual preference, race, language, religion,
nationality, or political preferences are irrelevant in the scope of the project and will not be taken into account
concerning your value or that of your contribution to the project.

9. Discuss or debate the idea, not the person.

10. There is no room for ambiguity: Ambiguity will be met with questioning; further ambiguity will be met with
silence. It is the responsibility of the originator to provide requested context.

11. If something is illegal outside the scope of the project, it is illegal in the scope of the project. This Code of Merit
does not take precedence over governing law.

12. This Code of Merit governs the technical procedures of the project not the activities outside of it.

13. Participation on the project equates to agreement of this Code of Merit.

14. No objectives beyond the stated objectives of this project are relevant to the project. Any intent to deviate the
project from its original purpose of existence will constitute grounds for remedial action which may include
expulsion from the project.

This document is the Code of Merit, version 1.0.

1.6 References

If you are using RxDock in your research, please cite [rDock2014]. Former software reference provided for complete-
ness is [RiboDock2004].

8 Chapter 1. About

https://github.com/dpyro/Code-of-Merit

CHAPTER

TWO

GETTING STARTED GUIDE

In this section, you have the documentation with installation and validation instructions for first-time users.

To continue with a short validation experiment (contained in the Getting started guide), please visit the Validation
experiments section.

2.1 Overview

RxDock is a fast and versatile open-source docking program that can be used against proteins and nucleic acids. It is
designed for high-throughput virtual screening (HTVS) campaigns and binding mode prediction studies.

The rDock program was developed from 1998 to 2006 (formerly known as RiboDock [RiboDock2004]) by the software
team at RiboTargets (subsequently Vernalis (R&D) Ltd.). In 2006, the software was licensed to the University of York
for maintenance and distribution under the name rDock. In 2012, Vernalis and the University of York agreed to release
the program as open-source software. The released version is licensed under GNU LPGL version 3.0 with support
from the University of Barcelona – rdock.sourceforge.net. The development of the open-source code stopped in 2014,
so in 2019 RxTx decided to revive it by forking rDock as RxDock.

The major components of the platform now include fast intermolecular scoring functions (van der Waals, polar, desol-
vation) validated against protein and RNA targets, a Genetic Algorithm-based stochastic search engine, a wide variety
of external structure-based drug discovery (SBDD) derived restraint terms (tethered template, pharmacophore, noe
distance restraints), and novel Genetic Programming-based post-docking filtering. A variety of scripts are provided to
perform automated validation experiments and to launch virtual screening campaigns.

This introductory guide is aimed at new users of RxDock. It describes the minimal set of steps required to build RxDock
from the source code distribution, and to run one of the automated validation experiments provided in the test suite
distribution. The instructions assume that you are comfortable with simple Linux command line administration tasks,
and with building Linux application from makefiles. Once you are familiar with these steps you should proceed to the
User and Reference Guide for more detailed documentation on the usage of RxDock.

2.2 Quick and dirty installation

In this section you will have short instructions to make a typical installation of RxDock.

To get the full documentation of all RxDock software package and methods, please go to the Reference guide.

Moreover, you can also check the following information:

• Getting started: installation and validation instructions for first-time users.

• Validation experiments: instructions and examples for re-running the validation sets we have carried out.

9

http://rdock.sourceforge.net/

RxDock Documentation, Release 0.1.0

• Calculating ROC curves: tutorial for generating ROC curves and other statistics after running RxDock docking
jobs.

2.2.1 Installation in 3 steps

We have been able to compile RxDock in the following Linux systems:

• CentOS 5.5 64 bits

• openSUSE 11.3 32 and 64 bits

• openSUSE 12.3 32 and 64 bits

• openSUSE 13.1 32 and 64 bits

• Ubuntu 12.04 32 and 64 bits

Step 1

First of all, you will need to install several packages before compiling and running RxDock:

• gcc and g++ compilers version > 3.3

• make

• cppunit and cppunit-devel

Note: For Ubuntu users:

If you are trying to use RxDock in Ubuntu, please note that csh shell is not included in a default installation. We
recommend to install csh in case some error arises (sudo apt-get install csh), even with all the above-stated
dependencies installed.

Afterwards, download the source code compressed file or get it by SVN in Downloads section.

Step 2

Then, run the following commands:

$ tar -xvzf rxdock-0.1.0.tar.gz
$ cd rxdock-0.1.0/build/

and, for 32 bits computers:

$ make linux-g++

for 64 bits computers:

$ make linux-g++-64

10 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

Step 3

After compiling successfully, type the following command to make a test and check that your compiled version works
good and the results are correct.

$ make test

If the test has succeed, you are done, enjoy using RxDock!

Otherwise, please check your dependencies and all the previous commands or go to Support Section to ask for help.

Just as a concluding remark, don’t forget to set the necessary environmental variables for running RxDock in the
command line (for example, in Bash shell):

$ export RBT_ROOT=/path/to/rxdock/installation/
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RBT_ROOT/lib
$ export PATH=$PATH:$RBT_ROOT/bin

2.2.2 Installation tutorial

We can say that RxDock has a great set of functionalities and that it is one of the best open-source high-throughput
virtual screening (HTVS) suites packed with all the functionalities aspiring computational chemists need, but the major
hurdle in getting new users onboard and proving it to them is the seemingly archaic way of installing and using the
software. The graphical user interface is non-existent, the software itself cannot be found maintained in the relevant
Linux (or macOS Homebrew, or FreeBSD Ports, etc.) repositories, you have to set up your working directory every
time you start using RxDock, you have to build the software from its sources, and all of that sounds very taxing and
complicated to the average user, aspiring graduate students and everyone who are not tech-savvy.

Getting started to use scientific software can be daunting for anyone, especially beginners or newcomers to the field.
Luckily, building and setting up RxDock is much easier done than said, and we will walk you over through the entire
process in this blog post. This blog post is intended for absolute beginners in Linux, scientific software in general and
computational chemistry.

In this tutorial, we will be using Ubuntu 20.04 LTS as an example, but newer Ubuntu versions should work just as well.

Installing and setting up RxDock

The good thing about command-line interface (CLI) software is that everything can be easily replicated and everyone
has the same user experience. Here, you will be able to follow the guide simply by copy-pasting the commands in your
terminal that comes with every Ubuntu desktop installation. Just open it up and follow the instruction further in the
blog post.

Before we start, let’s convince ourselves that we’re running Ubuntu 20.04:

$ cat /etc/os-release
NAME="Ubuntu"
VERSION="20.04.3 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.3 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

(continues on next page)

2.2. Quick and dirty installation 11

https://brew.sh/
https://www.freebsd.org/ports/
https://ubuntu.com/blog/ubuntu-20-04-lts-arrives

RxDock Documentation, Release 0.1.0

(continued from previous page)

PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal

Alternatively, if you have neofetch installed, you can use it instead:

$ neofetch
.-/+oossssoo+/-. pnikolic@rxtxboss

`:+ssssssssssssssssss+:` -----------------
-+ssssssssssssssssssyyssss+- OS: Ubuntu 20.04.3 LTS x86_64

.ossssssssssssssssssdMMMNysssso. Host: KVM/QEMU (Standard PC (Q35 + ICH9,␣
→˓2009) pc-q35-6.

/ssssssssssshdmmNNmmyNMMMMhssssss/ Kernel: 5.4.0-96-generic
+ssssssssshmydMMMMMMMNddddyssssssss+ Uptime: 55 mins

/sssssssshNMMMyhhyyyyhmNMMMNhssssssss/ Packages: 681 (dpkg), 5 (snap)
.ssssssssdMMMNhsssssssssshNMMMdssssssss. Shell: bash 5.0.17
+sssshhhyNMMNyssssssssssssyNMMMysssssss+ Resolution: 1024x768
ossyNMMMNyMMhsssssssssssssshmmmhssssssso Terminal: /dev/pts/0
ossyNMMMNyMMhsssssssssssssshmmmhssssssso CPU: AMD EPYC (with IBPB) (2) @ 3.393GHz
+sssshhhyNMMNyssssssssssssyNMMMysssssss+ GPU: 00:01.0 Red Hat, Inc. QXL paravirtual␣
→˓graphic card
.ssssssssdMMMNhsssssssssshNMMMdssssssss. Memory: 161MiB / 3931MiB
/sssssssshNMMMyhhyyyyhdNMMMNhssssssss/
+sssssssssdmydMMMMMMMMddddyssssssss+
/ssssssssssshdmNNNNmyNMMMMhssssss/
.ossssssssssssssssssdMMMNysssso.
-+sssssssssssssssssyyyssss+-
`:+ssssssssssssssssss+:`

.-/+oossssoo+/-.

The first thing we have to take care of is updates (in case the system isn’t already fully up-to-date). This is done with
apt update and apt upgrade commands:

$ sudo apt update
[sudo] password for pnikolic:
Hit:1 http://hr.archive.ubuntu.com/ubuntu focal InRelease
Hit:2 http://hr.archive.ubuntu.com/ubuntu focal-updates InRelease
Hit:3 http://hr.archive.ubuntu.com/ubuntu focal-backports InRelease
Hit:4 http://hr.archive.ubuntu.com/ubuntu focal-security InRelease
Reading package lists... Done
Building dependency tree
Reading state information... Done
37 packages can be upgraded. Run 'apt list --upgradable' to see them.

$ sudo apt upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
alsa-ucm-conf cloud-init cloud-initramfs-copymods cloud-initramfs-dyn-netconf command-
→˓not-found

(continues on next page)

12 Chapter 2. Getting started guide

https://github.com/dylanaraps/neofetch

RxDock Documentation, Release 0.1.0

(continued from previous page)

libasound2 libasound2-data libdrm-common libdrm2 libnetplan0 libpam-modules libpam-
→˓modules-bin
libpam-runtime libpam0g libprocps8 libssl1.1 libudisks2-0 linux-base netplan.io open-vm-
→˓tools
openssl overlayroot procps python-apt-common python3-apt python3-commandnotfound
python3-software-properties python3-update-manager rsync snapd software-properties-common
ubuntu-advantage-tools udisks2 ufw update-manager-core update-notifier-common wget
37 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 37.2 MB of archives.
After this operation, 1,161 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libpam0g amd64 1.3.1-
→˓5ubuntu4.3 [55.4 kB]
Get:2 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libpam-modules-bin␣
→˓amd64 1.3.1-5ubuntu4.3 [41.2 kB]
Get:3 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libpam-modules amd64␣
→˓1.3.1-5ubuntu4.3 [260 kB]
Get:4 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 rsync amd64 3.1.3-
→˓8ubuntu0.1 [318 kB]
Get:5 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 python-apt-common all␣
→˓2.0.0ubuntu0.20.04.6 [17.1 kB]
Get:6 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 python3-apt amd64 2.0.
→˓0ubuntu0.20.04.6 [154 kB]
Get:7 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 update-manager-core␣
→˓all 1:20.04.10.9 [11.5 kB]
Get:8 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 python3-update-
→˓manager all 1:20.04.10.9 [38.1 kB]
Get:9 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 ubuntu-advantage-
→˓tools amd64 27.5~20.04.1 [861 kB]
Get:10 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 update-notifier-
→˓common all 3.192.30.10 [133 kB]
Get:11 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libprocps8 amd64 2:3.
→˓3.16-1ubuntu2.3 [33.0 kB]
Get:12 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 procps amd64 2:3.3.
→˓16-1ubuntu2.3 [233 kB]
Get:13 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libdrm-common all 2.
→˓4.105-3~20.04.2 [5,552 B]
Get:14 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libdrm2 amd64 2.4.
→˓105-3~20.04.2 [32.3 kB]
Get:15 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libssl1.1 amd64 1.1.
→˓1f-1ubuntu2.10 [1,322 kB]
Get:16 http://hr.archive.ubuntu.com/ubuntu focal-updates/universe amd64 open-vm-tools␣
→˓amd64 2:11.3.0-2ubuntu0~ubuntu20.04.2 [647 kB]
Get:17 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libpam-runtime all 1.
→˓3.1-5ubuntu4.3 [37.3 kB]
Get:18 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libnetplan0 amd64 0.
→˓103-0ubuntu5~20.04.5 [53.4 kB]
Get:19 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 netplan.io amd64 0.
→˓103-0ubuntu5~20.04.5 [125 kB]
Get:20 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 openssl amd64 1.1.1f-
→˓1ubuntu2.10 [620 kB]
Get:21 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 command-not-found␣

(continues on next page)

2.2. Quick and dirty installation 13

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓all 20.04.5 [5,244 B]
Get:22 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 python3-
→˓commandnotfound all 20.04.5 [10.2 kB]
Get:23 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 ufw all 0.36-
→˓6ubuntu1 [147 kB]
Get:24 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 wget amd64 1.20.3-
→˓1ubuntu2 [348 kB]
Get:25 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libasound2 amd64 1.2.
→˓2-2.1ubuntu2.5 [335 kB]
Get:26 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libasound2-data all␣
→˓1.2.2-2.1ubuntu2.5 [20.1 kB]
Get:27 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 alsa-ucm-conf all 1.
→˓2.2-1ubuntu0.11 [26.9 kB]
Get:28 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libudisks2-0 amd64 2.
→˓8.4-1ubuntu2 [99.4 kB]
Get:29 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 linux-base all 4.
→˓5ubuntu3.7 [17.6 kB]
Get:30 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 software-properties-
→˓common all 0.99.9.8 [10.6 kB]
Get:31 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 python3-software-
→˓properties all 0.99.9.8 [24.9 kB]
Get:32 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 snapd amd64 2.51.
→˓1+20.04ubuntu2 [30.4 MB]
Get:33 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 udisks2 amd64 2.8.4-
→˓1ubuntu2 [245 kB]
Get:34 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 cloud-init all 21.4-
→˓0ubuntu1~20.04.1 [476 kB]
Get:35 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 cloud-initramfs-
→˓copymods all 0.45ubuntu2 [4,180 B]
Get:36 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 cloud-initramfs-dyn-
→˓netconf all 0.45ubuntu2 [6,700 B]
Get:37 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 overlayroot all 0.
→˓45ubuntu2 [15.6 kB]
Fetched 37.2 MB in 7s (5,471 kB/s)
Extracting templates from packages: 100%
Preconfiguring packages ...
(Reading database ... 71625 files and directories currently installed.)
Preparing to unpack .../libpam0g_1.3.1-5ubuntu4.3_amd64.deb ...
Unpacking libpam0g:amd64 (1.3.1-5ubuntu4.3) over (1.3.1-5ubuntu4.2) ...
Setting up libpam0g:amd64 (1.3.1-5ubuntu4.3) ...
(Reading database ... 71625 files and directories currently installed.)
Preparing to unpack .../libpam-modules-bin_1.3.1-5ubuntu4.3_amd64.deb ...
Unpacking libpam-modules-bin (1.3.1-5ubuntu4.3) over (1.3.1-5ubuntu4.2) ...
Setting up libpam-modules-bin (1.3.1-5ubuntu4.3) ...
(Reading database ... 71625 files and directories currently installed.)
Preparing to unpack .../libpam-modules_1.3.1-5ubuntu4.3_amd64.deb ...
Unpacking libpam-modules:amd64 (1.3.1-5ubuntu4.3) over (1.3.1-5ubuntu4.2) ...
Setting up libpam-modules:amd64 (1.3.1-5ubuntu4.3) ...
(Reading database ... 71625 files and directories currently installed.)
Preparing to unpack .../00-rsync_3.1.3-8ubuntu0.1_amd64.deb ...
Unpacking rsync (3.1.3-8ubuntu0.1) over (3.1.3-8) ...
Preparing to unpack .../01-python-apt-common_2.0.0ubuntu0.20.04.6_all.deb ...

(continues on next page)

14 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

Unpacking python-apt-common (2.0.0ubuntu0.20.04.6) over (2.0.0ubuntu0.20.04.5) ...
Preparing to unpack .../02-python3-apt_2.0.0ubuntu0.20.04.6_amd64.deb ...
Unpacking python3-apt (2.0.0ubuntu0.20.04.6) over (2.0.0ubuntu0.20.04.5) ...
Preparing to unpack .../03-update-manager-core_1%3a20.04.10.9_all.deb ...
Unpacking update-manager-core (1:20.04.10.9) over (1:20.04.10.7) ...
Preparing to unpack .../04-python3-update-manager_1%3a20.04.10.9_all.deb ...
Unpacking python3-update-manager (1:20.04.10.9) over (1:20.04.10.7) ...
Preparing to unpack .../05-ubuntu-advantage-tools_27.5~20.04.1_amd64.deb ...
Unpacking ubuntu-advantage-tools (27.5~20.04.1) over (27.2.2~20.04.1) ...
Preparing to unpack .../06-update-notifier-common_3.192.30.10_all.deb ...
Unpacking update-notifier-common (3.192.30.10) over (3.192.30.9) ...
Preparing to unpack .../07-libprocps8_2%3a3.3.16-1ubuntu2.3_amd64.deb ...
Unpacking libprocps8:amd64 (2:3.3.16-1ubuntu2.3) over (2:3.3.16-1ubuntu2.2) ...
Preparing to unpack .../08-procps_2%3a3.3.16-1ubuntu2.3_amd64.deb ...
Unpacking procps (2:3.3.16-1ubuntu2.3) over (2:3.3.16-1ubuntu2.2) ...
Preparing to unpack .../09-libdrm-common_2.4.105-3~20.04.2_all.deb ...
Unpacking libdrm-common (2.4.105-3~20.04.2) over (2.4.105-3~20.04.1) ...
Preparing to unpack .../10-libdrm2_2.4.105-3~20.04.2_amd64.deb ...
Unpacking libdrm2:amd64 (2.4.105-3~20.04.2) over (2.4.105-3~20.04.1) ...
Preparing to unpack .../11-libssl1.1_1.1.1f-1ubuntu2.10_amd64.deb ...
Unpacking libssl1.1:amd64 (1.1.1f-1ubuntu2.10) over (1.1.1f-1ubuntu2.8) ...
Preparing to unpack .../12-open-vm-tools_2%3a11.3.0-2ubuntu0~ubuntu20.04.2_amd64.deb ...
Unpacking open-vm-tools (2:11.3.0-2ubuntu0~ubuntu20.04.2) over (2:11.0.5-4) ...
Preparing to unpack .../13-libpam-runtime_1.3.1-5ubuntu4.3_all.deb ...
Unpacking libpam-runtime (1.3.1-5ubuntu4.3) over (1.3.1-5ubuntu4.2) ...
Setting up libpam-runtime (1.3.1-5ubuntu4.3) ...
(Reading database ... 71656 files and directories currently installed.)
Preparing to unpack .../00-libnetplan0_0.103-0ubuntu5~20.04.5_amd64.deb ...
Unpacking libnetplan0:amd64 (0.103-0ubuntu5~20.04.5) over (0.102-0ubuntu1~20.04.2) ...
Preparing to unpack .../01-netplan.io_0.103-0ubuntu5~20.04.5_amd64.deb ...
Unpacking netplan.io (0.103-0ubuntu5~20.04.5) over (0.102-0ubuntu1~20.04.2) ...
Preparing to unpack .../02-openssl_1.1.1f-1ubuntu2.10_amd64.deb ...
Unpacking openssl (1.1.1f-1ubuntu2.10) over (1.1.1f-1ubuntu2.8) ...
Preparing to unpack .../03-command-not-found_20.04.5_all.deb ...
Unpacking command-not-found (20.04.5) over (20.04.4) ...
Preparing to unpack .../04-python3-commandnotfound_20.04.5_all.deb ...
Unpacking python3-commandnotfound (20.04.5) over (20.04.4) ...
Preparing to unpack .../05-ufw_0.36-6ubuntu1_all.deb ...
Unpacking ufw (0.36-6ubuntu1) over (0.36-6) ...
Preparing to unpack .../06-wget_1.20.3-1ubuntu2_amd64.deb ...
Unpacking wget (1.20.3-1ubuntu2) over (1.20.3-1ubuntu1) ...
Preparing to unpack .../07-libasound2_1.2.2-2.1ubuntu2.5_amd64.deb ...
Unpacking libasound2:amd64 (1.2.2-2.1ubuntu2.5) over (1.2.2-2.1ubuntu2.4) ...
Preparing to unpack .../08-libasound2-data_1.2.2-2.1ubuntu2.5_all.deb ...
Unpacking libasound2-data (1.2.2-2.1ubuntu2.5) over (1.2.2-2.1ubuntu2.4) ...
Preparing to unpack .../09-alsa-ucm-conf_1.2.2-1ubuntu0.11_all.deb ...
Unpacking alsa-ucm-conf (1.2.2-1ubuntu0.11) over (1.2.2-1ubuntu0.9) ...
Preparing to unpack .../10-libudisks2-0_2.8.4-1ubuntu2_amd64.deb ...
Unpacking libudisks2-0:amd64 (2.8.4-1ubuntu2) over (2.8.4-1ubuntu1) ...
Preparing to unpack .../11-linux-base_4.5ubuntu3.7_all.deb ...
Unpacking linux-base (4.5ubuntu3.7) over (4.5ubuntu3.6) ...
Preparing to unpack .../12-software-properties-common_0.99.9.8_all.deb ...

(continues on next page)

2.2. Quick and dirty installation 15

RxDock Documentation, Release 0.1.0

(continued from previous page)

Unpacking software-properties-common (0.99.9.8) over (0.98.9.5) ...
Preparing to unpack .../13-python3-software-properties_0.99.9.8_all.deb ...
Unpacking python3-software-properties (0.99.9.8) over (0.98.9.5) ...
Preparing to unpack .../14-snapd_2.51.1+20.04ubuntu2_amd64.deb ...
Unpacking snapd (2.51.1+20.04ubuntu2) over (2.49.2+20.04) ...
Preparing to unpack .../15-udisks2_2.8.4-1ubuntu2_amd64.deb ...
Unpacking udisks2 (2.8.4-1ubuntu2) over (2.8.4-1ubuntu1) ...
Preparing to unpack .../16-cloud-init_21.4-0ubuntu1~20.04.1_all.deb ...
Unpacking cloud-init (21.4-0ubuntu1~20.04.1) over (21.2-3-g899bfaa9-0ubuntu2~20.04.1) ...
Preparing to unpack .../17-cloud-initramfs-copymods_0.45ubuntu2_all.deb ...
Unpacking cloud-initramfs-copymods (0.45ubuntu2) over (0.45ubuntu1) ...
Preparing to unpack .../18-cloud-initramfs-dyn-netconf_0.45ubuntu2_all.deb ...
Unpacking cloud-initramfs-dyn-netconf (0.45ubuntu2) over (0.45ubuntu1) ...
Preparing to unpack .../19-overlayroot_0.45ubuntu2_all.deb ...
Unpacking overlayroot (0.45ubuntu2) over (0.45ubuntu1) ...
Setting up snapd (2.51.1+20.04ubuntu2) ...
Installing new version of config file /etc/profile.d/apps-bin-path.sh ...
snapd.failure.service is a disabled or a static unit, not starting it.
snapd.snap-repair.service is a disabled or a static unit, not starting it.
Setting up linux-base (4.5ubuntu3.7) ...
Setting up alsa-ucm-conf (1.2.2-1ubuntu0.11) ...
Setting up libssl1.1:amd64 (1.1.1f-1ubuntu2.10) ...
Setting up libnetplan0:amd64 (0.103-0ubuntu5~20.04.5) ...
Setting up ufw (0.36-6ubuntu1) ...
Setting up netplan.io (0.103-0ubuntu5~20.04.5) ...
Setting up libasound2-data (1.2.2-2.1ubuntu2.5) ...
Setting up cloud-initramfs-copymods (0.45ubuntu2) ...
Setting up python-apt-common (2.0.0ubuntu0.20.04.6) ...
Setting up libasound2:amd64 (1.2.2-2.1ubuntu2.5) ...
Setting up cloud-initramfs-dyn-netconf (0.45ubuntu2) ...
Setting up openssl (1.1.1f-1ubuntu2.10) ...
Setting up libdrm-common (2.4.105-3~20.04.2) ...
Setting up overlayroot (0.45ubuntu2) ...
Setting up libprocps8:amd64 (2:3.3.16-1ubuntu2.3) ...
Setting up rsync (3.1.3-8ubuntu0.1) ...
Setting up libudisks2-0:amd64 (2.8.4-1ubuntu2) ...
Setting up udisks2 (2.8.4-1ubuntu2) ...
Setting up wget (1.20.3-1ubuntu2) ...
Setting up python3-apt (2.0.0ubuntu0.20.04.6) ...
Setting up python3-software-properties (0.99.9.8) ...
Setting up python3-commandnotfound (20.04.5) ...
Setting up libdrm2:amd64 (2.4.105-3~20.04.2) ...
Setting up open-vm-tools (2:11.3.0-2ubuntu0~ubuntu20.04.2) ...
Installing new version of config file /etc/vmware-tools/tools.conf.example ...
Installing new version of config file /etc/vmware-tools/vgauth.conf ...
Removing obsolete conffile /etc/vmware-tools/vm-support ...
Setting up python3-update-manager (1:20.04.10.9) ...
Setting up procps (2:3.3.16-1ubuntu2.3) ...
Setting up ubuntu-advantage-tools (27.5~20.04.1) ...
Installing new version of config file /etc/logrotate.d/ubuntu-advantage-tools ...
Installing new version of config file /etc/ubuntu-advantage/help_data.yaml ...
Installing new version of config file /etc/ubuntu-advantage/uaclient.conf ...

(continues on next page)

16 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

Created symlink /etc/systemd/system/timers.target.wants/ua-timer.timer → /lib/systemd/
→˓system/ua-timer.timer.
Created symlink /etc/systemd/system/multi-user.target.wants/ua-license-check.path → /
→˓lib/systemd/system/ua-license-check.path.
Setting up cloud-init (21.4-0ubuntu1~20.04.1) ...
Installing new version of config file /etc/cloud/cloud.cfg ...
Installing new version of config file /etc/cloud/templates/hosts.alpine.tmpl ...
Installing new version of config file /etc/cloud/templates/hosts.debian.tmpl ...
Installing new version of config file /etc/cloud/templates/resolv.conf.tmpl ...
Installing new version of config file /etc/cloud/templates/sources.list.debian.tmpl ...
Created symlink /etc/systemd/system/cloud-init.target.wants/cloud-init-hotplugd.socket␣
→˓→ /lib/systemd/system/cloud-init-hotplugd.socket.
Setting up software-properties-common (0.99.9.8) ...
Setting up command-not-found (20.04.5) ...
Setting up update-manager-core (1:20.04.10.9) ...
Setting up update-notifier-common (3.192.30.10) ...
Processing triggers for rsyslog (8.2001.0-1ubuntu1.1) ...
Processing triggers for systemd (245.4-4ubuntu3.15) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for dbus (1.12.16-2ubuntu2.1) ...
Processing triggers for install-info (6.7.0.dfsg.2-5) ...
Processing triggers for mime-support (3.64ubuntu1) ...
Processing triggers for libc-bin (2.31-0ubuntu9.2) ...
Processing triggers for initramfs-tools (0.136ubuntu6.6) ...
update-initramfs: Generating /boot/initrd.img-5.4.0-96-generic

Let’s continue with installing tools for obtaining and building RxDock, specifically Git, Meson, and GNU C++ com-
piler. Additionally, CMake and pkg-config are used for finding dependencies on the system. The installation is done
using the apt install command:

$ sudo apt install git meson build-essential cmake pkg-config
Reading package lists... Done
Building dependency tree
Reading state information... Done
git is already the newest version (1:2.25.1-1ubuntu3.2).
git set to manually installed.
The following additional packages will be installed:
binutils binutils-common binutils-x86-64-linux-gnu cmake-data cpp cpp-9 dpkg-dev␣
→˓fakeroot g++
g++-9 gcc gcc-9 gcc-9-base libalgorithm-diff-perl libalgorithm-diff-xs-perl
libalgorithm-merge-perl libasan5 libatomic1 libbinutils libc-dev-bin libc6-dev libcc1-0
libcrypt-dev libctf-nobfd0 libctf0 libdpkg-perl libfakeroot libfile-fcntllock-perl␣
→˓libgcc-9-dev
libgomp1 libisl22 libitm1 libjsoncpp1 liblsan0 libmpc3 libquadmath0 librhash0 libstdc++-
→˓9-dev
libtsan0 libubsan1 linux-libc-dev make manpages-dev ninja-build
Suggested packages:
binutils-doc cmake-doc cpp-doc gcc-9-locales debian-keyring g++-multilib g++-9-multilib␣
→˓gcc-9-doc
gcc-multilib autoconf automake libtool flex bison gdb gcc-doc gcc-9-multilib glibc-doc␣
→˓bzr
libstdc++-9-doc make-doc

(continues on next page)

2.2. Quick and dirty installation 17

https://git-scm.com/
https://mesonbuild.com/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://cmake.org/
https://www.freedesktop.org/wiki/Software/pkg-config/

RxDock Documentation, Release 0.1.0

(continued from previous page)

The following NEW packages will be installed:
binutils binutils-common binutils-x86-64-linux-gnu build-essential cmake cmake-data cpp␣
→˓cpp-9
dpkg-dev fakeroot g++ g++-9 gcc gcc-9 gcc-9-base libalgorithm-diff-perl libalgorithm-
→˓diff-xs-perl
libalgorithm-merge-perl libasan5 libatomic1 libbinutils libc-dev-bin libc6-dev libcc1-0
libcrypt-dev libctf-nobfd0 libctf0 libdpkg-perl libfakeroot libfile-fcntllock-perl␣
→˓libgcc-9-dev
libgomp1 libisl22 libitm1 libjsoncpp1 liblsan0 libmpc3 libquadmath0 librhash0 libstdc++-
→˓9-dev
libtsan0 libubsan1 linux-libc-dev make manpages-dev meson ninja-build pkg-config
0 upgraded, 48 newly installed, 0 to remove and 0 not upgraded.
Need to get 49.0 MB of archives.
After this operation, 220 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 binutils-common amd64␣
→˓2.34-6ubuntu1.3 [207 kB]
Get:2 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libbinutils amd64 2.
→˓34-6ubuntu1.3 [474 kB]
Get:3 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libctf-nobfd0 amd64 2.
→˓34-6ubuntu1.3 [47.4 kB]
Get:4 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libctf0 amd64 2.34-
→˓6ubuntu1.3 [46.6 kB]
Get:5 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 binutils-x86-64-linux-
→˓gnu amd64 2.34-6ubuntu1.3 [1,613 kB]
Get:6 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 binutils amd64 2.34-
→˓6ubuntu1.3 [3,380 B]
Get:7 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libc-dev-bin amd64 2.
→˓31-0ubuntu9.2 [71.8 kB]
Get:8 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 linux-libc-dev amd64␣
→˓5.4.0-96.109 [1,114 kB]
Get:9 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libcrypt-dev amd64 1:4.4.10-
→˓10ubuntu4 [104 kB]
Get:10 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libc6-dev amd64 2.31-
→˓0ubuntu9.2 [2,520 kB]
Get:11 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 gcc-9-base amd64 9.3.
→˓0-17ubuntu1~20.04 [19.1 kB]
Get:12 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libisl22 amd64 0.22.1-1 [592␣
→˓kB]
Get:13 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libmpc3 amd64 1.1.0-1 [40.8␣
→˓kB]
Get:14 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 cpp-9 amd64 9.3.0-
→˓17ubuntu1~20.04 [7,494 kB]
Get:15 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 cpp amd64 4:9.3.0-1ubuntu2␣
→˓[27.6 kB]
Get:16 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libcc1-0 amd64 10.3.
→˓0-1ubuntu1~20.04 [48.8 kB]
Get:17 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libgomp1 amd64 10.3.
→˓0-1ubuntu1~20.04 [102 kB]
Get:18 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libitm1 amd64 10.3.0-
→˓1ubuntu1~20.04 [26.2 kB]
Get:19 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libatomic1 amd64 10.

(continues on next page)

18 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓3.0-1ubuntu1~20.04 [9,284 B]
Get:20 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libasan5 amd64 9.3.0-
→˓17ubuntu1~20.04 [394 kB]
Get:21 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 liblsan0 amd64 10.3.
→˓0-1ubuntu1~20.04 [835 kB]
Get:22 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libtsan0 amd64 10.3.
→˓0-1ubuntu1~20.04 [2,009 kB]
Get:23 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libubsan1 amd64 10.3.
→˓0-1ubuntu1~20.04 [784 kB]
Get:24 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libquadmath0 amd64␣
→˓10.3.0-1ubuntu1~20.04 [146 kB]
Get:25 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libgcc-9-dev amd64 9.
→˓3.0-17ubuntu1~20.04 [2,360 kB]
Get:26 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 gcc-9 amd64 9.3.0-
→˓17ubuntu1~20.04 [8,241 kB]
Get:27 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 gcc amd64 4:9.3.0-1ubuntu2␣
→˓[5,208 B]
Get:28 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 libstdc++-9-dev␣
→˓amd64 9.3.0-17ubuntu1~20.04 [1,714 kB]
Get:29 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 g++-9 amd64 9.3.0-
→˓17ubuntu1~20.04 [8,405 kB]
Get:30 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 g++ amd64 4:9.3.0-1ubuntu2␣
→˓[1,604 B]
Get:31 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 make amd64 4.2.1-1.2 [162 kB]
Get:32 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libdpkg-perl all 1.19.
→˓7ubuntu3 [230 kB]
Get:33 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 dpkg-dev all 1.19.7ubuntu3␣
→˓[679 kB]
Get:34 http://hr.archive.ubuntu.com/ubuntu focal-updates/main amd64 build-essential␣
→˓amd64 12.8ubuntu1.1 [4,664 B]
Get:35 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 cmake-data all 3.16.3-
→˓1ubuntu1 [1,612 kB]
Get:36 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libjsoncpp1 amd64 1.7.4-3.
→˓1ubuntu2 [75.6 kB]
Get:37 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 librhash0 amd64 1.3.9-1 [113␣
→˓kB]
Get:38 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 cmake amd64 3.16.3-1ubuntu1␣
→˓[3,669 kB]
Get:39 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libfakeroot amd64 1.24-1 [25.
→˓7 kB]
Get:40 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 fakeroot amd64 1.24-1 [62.6␣
→˓kB]
Get:41 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libalgorithm-diff-perl all 1.
→˓19.03-2 [46.6 kB]
Get:42 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libalgorithm-diff-xs-perl␣
→˓amd64 0.04-6 [11.3 kB]
Get:43 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libalgorithm-merge-perl all␣
→˓0.08-3 [12.0 kB]
Get:44 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 libfile-fcntllock-perl amd64␣
→˓0.22-3build4 [33.1 kB]
Get:45 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 manpages-dev all 5.05-1 [2,
→˓266 kB]

(continues on next page)

2.2. Quick and dirty installation 19

RxDock Documentation, Release 0.1.0

(continued from previous page)

Get:46 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 ninja-build amd64 1.10.0-
→˓1build1 [107 kB]
Get:47 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 meson all 0.53.2-
→˓2ubuntu2 [376 kB]
Get:48 http://hr.archive.ubuntu.com/ubuntu focal/main amd64 pkg-config amd64 0.29.1-
→˓0ubuntu4 [45.5 kB]
Fetched 49.0 MB in 9s (5,612 kB/s)
Extracting templates from packages: 100%
Selecting previously unselected package binutils-common:amd64.
(Reading database ... 71680 files and directories currently installed.)
Preparing to unpack .../00-binutils-common_2.34-6ubuntu1.3_amd64.deb ...
Unpacking binutils-common:amd64 (2.34-6ubuntu1.3) ...
Selecting previously unselected package libbinutils:amd64.
Preparing to unpack .../01-libbinutils_2.34-6ubuntu1.3_amd64.deb ...
Unpacking libbinutils:amd64 (2.34-6ubuntu1.3) ...
Selecting previously unselected package libctf-nobfd0:amd64.
Preparing to unpack .../02-libctf-nobfd0_2.34-6ubuntu1.3_amd64.deb ...
Unpacking libctf-nobfd0:amd64 (2.34-6ubuntu1.3) ...
Selecting previously unselected package libctf0:amd64.
Preparing to unpack .../03-libctf0_2.34-6ubuntu1.3_amd64.deb ...
Unpacking libctf0:amd64 (2.34-6ubuntu1.3) ...
Selecting previously unselected package binutils-x86-64-linux-gnu.
Preparing to unpack .../04-binutils-x86-64-linux-gnu_2.34-6ubuntu1.3_amd64.deb ...
Unpacking binutils-x86-64-linux-gnu (2.34-6ubuntu1.3) ...
Selecting previously unselected package binutils.
Preparing to unpack .../05-binutils_2.34-6ubuntu1.3_amd64.deb ...
Unpacking binutils (2.34-6ubuntu1.3) ...
Selecting previously unselected package libc-dev-bin.
Preparing to unpack .../06-libc-dev-bin_2.31-0ubuntu9.2_amd64.deb ...
Unpacking libc-dev-bin (2.31-0ubuntu9.2) ...
Selecting previously unselected package linux-libc-dev:amd64.
Preparing to unpack .../07-linux-libc-dev_5.4.0-96.109_amd64.deb ...
Unpacking linux-libc-dev:amd64 (5.4.0-96.109) ...
Selecting previously unselected package libcrypt-dev:amd64.
Preparing to unpack .../08-libcrypt-dev_1%3a4.4.10-10ubuntu4_amd64.deb ...
Unpacking libcrypt-dev:amd64 (1:4.4.10-10ubuntu4) ...
Selecting previously unselected package libc6-dev:amd64.
Preparing to unpack .../09-libc6-dev_2.31-0ubuntu9.2_amd64.deb ...
Unpacking libc6-dev:amd64 (2.31-0ubuntu9.2) ...
Selecting previously unselected package gcc-9-base:amd64.
Preparing to unpack .../10-gcc-9-base_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking gcc-9-base:amd64 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package libisl22:amd64.
Preparing to unpack .../11-libisl22_0.22.1-1_amd64.deb ...
Unpacking libisl22:amd64 (0.22.1-1) ...
Selecting previously unselected package libmpc3:amd64.
Preparing to unpack .../12-libmpc3_1.1.0-1_amd64.deb ...
Unpacking libmpc3:amd64 (1.1.0-1) ...
Selecting previously unselected package cpp-9.
Preparing to unpack .../13-cpp-9_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking cpp-9 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package cpp.

(continues on next page)

20 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

Preparing to unpack .../14-cpp_4%3a9.3.0-1ubuntu2_amd64.deb ...
Unpacking cpp (4:9.3.0-1ubuntu2) ...
Selecting previously unselected package libcc1-0:amd64.
Preparing to unpack .../15-libcc1-0_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libcc1-0:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libgomp1:amd64.
Preparing to unpack .../16-libgomp1_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libgomp1:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libitm1:amd64.
Preparing to unpack .../17-libitm1_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libitm1:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libatomic1:amd64.
Preparing to unpack .../18-libatomic1_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libatomic1:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libasan5:amd64.
Preparing to unpack .../19-libasan5_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking libasan5:amd64 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package liblsan0:amd64.
Preparing to unpack .../20-liblsan0_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking liblsan0:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libtsan0:amd64.
Preparing to unpack .../21-libtsan0_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libtsan0:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libubsan1:amd64.
Preparing to unpack .../22-libubsan1_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libubsan1:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libquadmath0:amd64.
Preparing to unpack .../23-libquadmath0_10.3.0-1ubuntu1~20.04_amd64.deb ...
Unpacking libquadmath0:amd64 (10.3.0-1ubuntu1~20.04) ...
Selecting previously unselected package libgcc-9-dev:amd64.
Preparing to unpack .../24-libgcc-9-dev_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking libgcc-9-dev:amd64 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package gcc-9.
Preparing to unpack .../25-gcc-9_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking gcc-9 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package gcc.
Preparing to unpack .../26-gcc_4%3a9.3.0-1ubuntu2_amd64.deb ...
Unpacking gcc (4:9.3.0-1ubuntu2) ...
Selecting previously unselected package libstdc++-9-dev:amd64.
Preparing to unpack .../27-libstdc++-9-dev_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking libstdc++-9-dev:amd64 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package g++-9.
Preparing to unpack .../28-g++-9_9.3.0-17ubuntu1~20.04_amd64.deb ...
Unpacking g++-9 (9.3.0-17ubuntu1~20.04) ...
Selecting previously unselected package g++.
Preparing to unpack .../29-g++_4%3a9.3.0-1ubuntu2_amd64.deb ...
Unpacking g++ (4:9.3.0-1ubuntu2) ...
Selecting previously unselected package make.
Preparing to unpack .../30-make_4.2.1-1.2_amd64.deb ...
Unpacking make (4.2.1-1.2) ...
Selecting previously unselected package libdpkg-perl.
Preparing to unpack .../31-libdpkg-perl_1.19.7ubuntu3_all.deb ...

(continues on next page)

2.2. Quick and dirty installation 21

RxDock Documentation, Release 0.1.0

(continued from previous page)

Unpacking libdpkg-perl (1.19.7ubuntu3) ...
Selecting previously unselected package dpkg-dev.
Preparing to unpack .../32-dpkg-dev_1.19.7ubuntu3_all.deb ...
Unpacking dpkg-dev (1.19.7ubuntu3) ...
Selecting previously unselected package build-essential.
Preparing to unpack .../33-build-essential_12.8ubuntu1.1_amd64.deb ...
Unpacking build-essential (12.8ubuntu1.1) ...
Selecting previously unselected package cmake-data.
Preparing to unpack .../34-cmake-data_3.16.3-1ubuntu1_all.deb ...
Unpacking cmake-data (3.16.3-1ubuntu1) ...
Selecting previously unselected package libjsoncpp1:amd64.
Preparing to unpack .../35-libjsoncpp1_1.7.4-3.1ubuntu2_amd64.deb ...
Unpacking libjsoncpp1:amd64 (1.7.4-3.1ubuntu2) ...
Selecting previously unselected package librhash0:amd64.
Preparing to unpack .../36-librhash0_1.3.9-1_amd64.deb ...
Unpacking librhash0:amd64 (1.3.9-1) ...
Selecting previously unselected package cmake.
Preparing to unpack .../37-cmake_3.16.3-1ubuntu1_amd64.deb ...
Unpacking cmake (3.16.3-1ubuntu1) ...
Selecting previously unselected package libfakeroot:amd64.
Preparing to unpack .../38-libfakeroot_1.24-1_amd64.deb ...
Unpacking libfakeroot:amd64 (1.24-1) ...
Selecting previously unselected package fakeroot.
Preparing to unpack .../39-fakeroot_1.24-1_amd64.deb ...
Unpacking fakeroot (1.24-1) ...
Selecting previously unselected package libalgorithm-diff-perl.
Preparing to unpack .../40-libalgorithm-diff-perl_1.19.03-2_all.deb ...
Unpacking libalgorithm-diff-perl (1.19.03-2) ...
Selecting previously unselected package libalgorithm-diff-xs-perl.
Preparing to unpack .../41-libalgorithm-diff-xs-perl_0.04-6_amd64.deb ...
Unpacking libalgorithm-diff-xs-perl (0.04-6) ...
Selecting previously unselected package libalgorithm-merge-perl.
Preparing to unpack .../42-libalgorithm-merge-perl_0.08-3_all.deb ...
Unpacking libalgorithm-merge-perl (0.08-3) ...
Selecting previously unselected package libfile-fcntllock-perl.
Preparing to unpack .../43-libfile-fcntllock-perl_0.22-3build4_amd64.deb ...
Unpacking libfile-fcntllock-perl (0.22-3build4) ...
Selecting previously unselected package manpages-dev.
Preparing to unpack .../44-manpages-dev_5.05-1_all.deb ...
Unpacking manpages-dev (5.05-1) ...
Selecting previously unselected package ninja-build.
Preparing to unpack .../45-ninja-build_1.10.0-1build1_amd64.deb ...
Unpacking ninja-build (1.10.0-1build1) ...
Selecting previously unselected package meson.
Preparing to unpack .../46-meson_0.53.2-2ubuntu2_all.deb ...
Unpacking meson (0.53.2-2ubuntu2) ...
Selecting previously unselected package pkg-config.
Preparing to unpack .../47-pkg-config_0.29.1-0ubuntu4_amd64.deb ...
Unpacking pkg-config (0.29.1-0ubuntu4) ...
Setting up manpages-dev (5.05-1) ...
Setting up libfile-fcntllock-perl (0.22-3build4) ...
Setting up libalgorithm-diff-perl (1.19.03-2) ...

(continues on next page)

22 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

Setting up binutils-common:amd64 (2.34-6ubuntu1.3) ...
Setting up linux-libc-dev:amd64 (5.4.0-96.109) ...
Setting up libctf-nobfd0:amd64 (2.34-6ubuntu1.3) ...
Setting up libgomp1:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libfakeroot:amd64 (1.24-1) ...
Setting up ninja-build (1.10.0-1build1) ...
Setting up fakeroot (1.24-1) ...
update-alternatives: using /usr/bin/fakeroot-sysv to provide /usr/bin/fakeroot␣
→˓(fakeroot) in auto mode
Setting up make (4.2.1-1.2) ...
Setting up libquadmath0:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libmpc3:amd64 (1.1.0-1) ...
Setting up libatomic1:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libdpkg-perl (1.19.7ubuntu3) ...
Setting up libubsan1:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up librhash0:amd64 (1.3.9-1) ...
Setting up libcrypt-dev:amd64 (1:4.4.10-10ubuntu4) ...
Setting up libisl22:amd64 (0.22.1-1) ...
Setting up cmake-data (3.16.3-1ubuntu1) ...
Setting up libbinutils:amd64 (2.34-6ubuntu1.3) ...
Setting up libc-dev-bin (2.31-0ubuntu9.2) ...
Setting up libalgorithm-diff-xs-perl (0.04-6) ...
Setting up libcc1-0:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up liblsan0:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libitm1:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libjsoncpp1:amd64 (1.7.4-3.1ubuntu2) ...
Setting up gcc-9-base:amd64 (9.3.0-17ubuntu1~20.04) ...
Setting up libalgorithm-merge-perl (0.08-3) ...
Setting up libtsan0:amd64 (10.3.0-1ubuntu1~20.04) ...
Setting up libctf0:amd64 (2.34-6ubuntu1.3) ...
Setting up meson (0.53.2-2ubuntu2) ...
Setting up libasan5:amd64 (9.3.0-17ubuntu1~20.04) ...
Setting up pkg-config (0.29.1-0ubuntu4) ...
Setting up cmake (3.16.3-1ubuntu1) ...
Setting up cpp-9 (9.3.0-17ubuntu1~20.04) ...
Setting up libc6-dev:amd64 (2.31-0ubuntu9.2) ...
Setting up binutils-x86-64-linux-gnu (2.34-6ubuntu1.3) ...
Setting up binutils (2.34-6ubuntu1.3) ...
Setting up dpkg-dev (1.19.7ubuntu3) ...
Setting up libgcc-9-dev:amd64 (9.3.0-17ubuntu1~20.04) ...
Setting up cpp (4:9.3.0-1ubuntu2) ...
Setting up gcc-9 (9.3.0-17ubuntu1~20.04) ...
Setting up libstdc++-9-dev:amd64 (9.3.0-17ubuntu1~20.04) ...
Setting up gcc (4:9.3.0-1ubuntu2) ...
Setting up g++-9 (9.3.0-17ubuntu1~20.04) ...
Setting up g++ (4:9.3.0-1ubuntu2) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode
Setting up build-essential (12.8ubuntu1.1) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for libc-bin (2.31-0ubuntu9.2) ...

Of course, if you already have installed the packages before, apt will tell you.

2.2. Quick and dirty installation 23

RxDock Documentation, Release 0.1.0

Let’s continue by installing the required libraries, namely Eigen, PCG, {fmt}, and Google Test using apt install:

$ sudo apt install libfmt-dev libeigen3-dev libpcg-cpp-dev googletest
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
libeigen3-doc libmpfrc++-dev libfmt-doc
The following NEW packages will be installed:
googletest libeigen3-dev libfmt-dev libpcg-cpp-dev
0 upgraded, 4 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,617 kB of archives.
After this operation, 12.6 MB of additional disk space will be used.
Get:1 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 googletest all 1.10.0-2␣
→˓[623 kB]
Get:2 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 libpcg-cpp-dev all 0.98.1-
→˓2 [21.4 kB]
Get:3 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 libeigen3-dev all 3.3.7-2␣
→˓[815 kB]
Get:4 http://hr.archive.ubuntu.com/ubuntu focal/universe amd64 libfmt-dev amd64 6.1.2+ds-
→˓2 [158 kB]
Fetched 1,617 kB in 0s (3,660 kB/s)
Selecting previously unselected package googletest.
(Reading database ... 82001 files and directories currently installed.)
Preparing to unpack .../googletest_1.10.0-2_all.deb ...
Unpacking googletest (1.10.0-2) ...
Selecting previously unselected package libpcg-cpp-dev.
Preparing to unpack .../libpcg-cpp-dev_0.98.1-2_all.deb ...
Unpacking libpcg-cpp-dev (0.98.1-2) ...
Selecting previously unselected package libeigen3-dev.
Preparing to unpack .../libeigen3-dev_3.3.7-2_all.deb ...
Unpacking libeigen3-dev (3.3.7-2) ...
Selecting previously unselected package libfmt-dev.
Preparing to unpack .../libfmt-dev_6.1.2+ds-2_amd64.deb ...
Unpacking libfmt-dev (6.1.2+ds-2) ...
Setting up googletest (1.10.0-2) ...
Setting up libeigen3-dev (3.3.7-2) ...
Setting up libfmt-dev (6.1.2+ds-2) ...
Setting up libpcg-cpp-dev (0.98.1-2) ...

If your output looks like this, you’re all set to begin installing RxDock. The latest version of RxDock can be found on
Bitbucket, GitHub, and GitLab. The last one is the official repository and the other two are just mirroring it. We’ll be
using GitLab in the following steps.

$ git clone https://gitlab.com/rxdock/rxdock.git
Cloning into 'rxdock'...
remote: Enumerating objects: 6181, done.
remote: Counting objects: 100% (2505/2505), done.
remote: Compressing objects: 100% (922/922), done.
remote: Total 6181 (delta 1874), reused 2014 (delta 1564), pack-reused 3676
Receiving objects: 100% (6181/6181), 33.53 MiB | 5.45 MiB/s, done.
Resolving deltas: 100% (4610/4610), done.

You should have the directory called rxdock with all the necessary files downloaded from GitLab. Let’s enter that

24 Chapter 2. Getting started guide

https://eigen.tuxfamily.org/
https://www.pcg-random.org/
https://fmt.dev/
https://github.com/google/googletest
https://bitbucket.org/rxdock/rxdock
https://github.com/rxdock/rxdock
https://gitlab.com/rxdock/rxdock

RxDock Documentation, Release 0.1.0

directory:

$ cd rxdock

Here we will check out the patched-rdock tag which will give us what the name says, a patched rDock. This is a
good choice since documentation is still written for rDock and does not cover the latest changes in the command-line
interface and configuration files.

Note: You can choose to use the latest code (in the master branch) instead of the patched-rdock tag, but be aware that
there are no guarantees about its correctness or performance: in other words, it might crash and/or produce incorrect
results.

$ git checkout patched-rdock
Note: switching to 'patched-rdock'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at c0c3a3a Fixed MSVC error C3016

RxDock’s build configuration is done using the Meson build system. Here we set the build type to release and enable
the building of tests, which will be used to verify the correctness of the resulting build.

$ meson -Dbuildtype=release -Dtests=true builddir
The Meson build system
Version: 0.53.2
Source dir: /home/pnikolic/rxdock
Build dir: /home/pnikolic/rxdock/builddir
Build type: native build
Project name: RxDock
Project version: 0.1.0
C++ compiler for the host machine: c++ (gcc 9.3.0 "c++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.
→˓3.0")
C++ linker for the host machine: c++ ld.bfd 2.34
Host machine cpu family: x86_64
Host machine cpu: x86_64
Found pkg-config: /usr/bin/pkg-config (0.29.1)
Run-time dependency eigen3 found: YES 3.3.7
Run-time dependency OpenMP found: YES 4.5
Found CMake: /usr/bin/cmake (3.16.3)

(continues on next page)

2.2. Quick and dirty installation 25

RxDock Documentation, Release 0.1.0

(continued from previous page)

Run-time dependency pcg-cpp found: NO (tried pkgconfig and cmake)
Looking for a fallback subproject for the dependency pcg-cpp
Downloading pcg source from https://github.com/imneme/pcg-cpp/archive/v0.98.1.tar.gz
Downloading file of unknown size.
Downloading pcg patch from https://wrapdb.mesonbuild.com/v1/projects/pcg/0.98.1/1/get_zip
Download size: 268
Downloading:

|Executing subproject pcg method meson
|
|Project name: pcg-cpp
|Project version: 0.98.1
|C++ compiler for the host machine: c++ (gcc 9.3.0 "c++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.
→˓3.0")
|C++ linker for the host machine: c++ ld.bfd 2.34
|Build targets in project: 0
|Subproject pcg finished.

Dependency pcg-cpp from subproject subprojects/pcg found: YES 0.98.1
Run-time dependency cxxopts found: NO (tried pkgconfig and cmake)
Looking for a fallback subproject for the dependency cxxopts
Downloading cxxopts source from https://github.com/jarro2783/cxxopts/archive/v2.2.0.tar.
→˓gz
Downloading file of unknown size.
Downloading cxxopts patch from https://wrapdb.mesonbuild.com/v1/projects/cxxopts/2.2.0/1/
→˓get_zip
Download size: 1022
Downloading:

|Executing subproject cxxopts method meson
|
|Project name: cxxopts
|Project version: 2.2.0
|C++ compiler for the host machine: c++ (gcc 9.3.0 "c++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.
→˓3.0")
|C++ linker for the host machine: c++ ld.bfd 2.34
|Build targets in project: 1
|Subproject cxxopts finished.

Dependency cxxopts from subproject subprojects/cxxopts found: YES 2.2.0
Run-time dependency dt_smarts found: NO (tried pkgconfig and cmake)
Run-time dependency dt_smiles found: NO (tried pkgconfig and cmake)
Run-time dependency GTest found: YES (building self)
Build targets in project: 9

RxDock 0.1.0

Subprojects
cxxopts: YES

pcg: YES

Found ninja-1.10.0 at /usr/bin/ninja

26 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

Should Meson fail to find any of the dependencies listed above, use the apt search command to find the desired
package and install it manually using apt install command. Also, should you fail to find the packages and get stuck
on this step, please use the issue tracker to check if a similar issue to one that you have has already been reported and
report it if it has not.

Build RxDock using the ninja command:

$ ninja -C builddir
ninja: Entering directory `builddir'
[9/154] Compiling C++ object 'rxdock@sha/src_GP_RbtGPParser.cxx.o'.
../src/GP/RbtGPParser.cxx: In member function 'RbtReturnType␣
→˓RbtGPParser::Parse1Output(RbtGPChromosomePtr, int)':
../src/GP/RbtGPParser.cxx:78:17: warning: unused variable 'f2' [-Wunused-variable]

78 | RbtReturnType f2 = commands[ncomm]->Execute();
| ^~

[31/154] Compiling C++ object 'rxdock@sha/src_lib_RbtBond.cxx.o'.
../src/lib/RbtBond.cxx: In constructor 'RbtBond::RbtBond(int, RbtAtomPtr&, RbtAtomPtr&,␣
→˓int)':
../src/lib/RbtBond.cxx:33:8: warning: unused variable 'bOK1' [-Wunused-variable]

33 | bool bOK1 = m_spAtom1->AddBond(this);
| ^~~~

../src/lib/RbtBond.cxx:34:8: warning: unused variable 'bOK2' [-Wunused-variable]
34 | bool bOK2 = m_spAtom2->AddBond(this);

| ^~~~
../src/lib/RbtBond.cxx: In destructor 'virtual RbtBond::~RbtBond()':
../src/lib/RbtBond.cxx:50:8: warning: unused variable 'bOK1' [-Wunused-variable]

50 | bool bOK1 = m_spAtom1->RemoveBond(this);
| ^~~~

../src/lib/RbtBond.cxx:51:8: warning: unused variable 'bOK2' [-Wunused-variable]
51 | bool bOK2 = m_spAtom2->RemoveBond(this);

| ^~~~
[60/154] Compiling C++ object 'rxdock@sha/src_lib_RbtDockingSite.cxx.o'.
../src/lib/RbtDockingSite.cxx: In member function 'void RbtDockingSite::CreateGrid()':
../src/lib/RbtDockingSite.cxx:300:21: warning: comparison of integer expressions of␣
→˓different signedness: 'int' and 'unsigned int' [-Wsign-compare]
300 | for (int i = 0; i < m_spGrid->GetN(); i++) {

| ~~^~~~~~~~~~~~~~~~~~
[106/154] Compiling C++ object 'rxdock@sha/src_lib_RbtRealGrid.cxx.o'.
In file included from /usr/include/eigen3/unsupported/Eigen/CXX11/Tensor:107,

from ../include/RbtRealGrid.h:24,
from ../src/lib/RbtRealGrid.cxx:18:

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h: In␣
→˓instantiation of 'struct Eigen::TensorEvaluator<const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::DefaultDevice>':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:366:65: ␣
→˓recursively required from 'struct Eigen::TensorEvaluator<const␣
→˓Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_cmp_op<float, float,␣
→˓Eigen::internal::cmp_GE>, const Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> > >, Eigen::DefaultDevice>'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:366:65: ␣
→˓required from 'struct Eigen::TensorEvaluator<const Eigen::TensorCwiseBinaryOp
→˓<Eigen::internal::scalar_boolean_and_op, const Eigen::TensorCwiseBinaryOp
→˓<Eigen::internal::scalar_cmp_op<float, float, Eigen::internal::cmp_GE>, const␣

(continues on next page)

2.2. Quick and dirty installation 27

https://gitlab.com/rxdock/rxdock/-/issues

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓Eigen::Tensor<float, 3, 1>, const Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_
→˓constant_op<float>, const Eigen::Tensor<float, 3, 1> > >, const␣
→˓Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_cmp_op<float, float,␣
→˓Eigen::internal::cmp_LT>, const Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> > > >, Eigen::DefaultDevice>'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:96:70: required␣
→˓from 'struct Eigen::TensorEvaluator<const Eigen::TensorAssignOp<Eigen::Tensor<bool, 3,␣
→˓1>, const Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_boolean_and_op, const␣
→˓Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_cmp_op<float, float,␣
→˓Eigen::internal::cmp_GE>, const Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> > >, const Eigen::TensorCwiseBinaryOp
→˓<Eigen::internal::scalar_cmp_op<float, float, Eigen::internal::cmp_LT>, const␣
→˓Eigen::Tensor<float, 3, 1>, const Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_
→˓constant_op<float>, const Eigen::Tensor<float, 3, 1> > > > >, Eigen::DefaultDevice>'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:388:14: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorCwiseBinaryOp
→˓<Eigen::internal::scalar_boolean_and_op, const Eigen::TensorCwiseBinaryOp
→˓<Eigen::internal::scalar_cmp_op<float, float, Eigen::internal::cmp_GE>, const␣
→˓Eigen::Tensor<float, 3, 1>, const Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_
→˓constant_op<float>, const Eigen::Tensor<float, 3, 1> > >, const␣
→˓Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_cmp_op<float, float,␣
→˓Eigen::internal::cmp_LT>, const Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> > > >; Scalar_ = bool; int NumIndices_ = 3; int Options_ =␣
→˓1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:207:41: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:162:71:␣
→˓warning: ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]
162 | PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),

| ~~~^~~~
In file included from /usr/include/eigen3/unsupported/Eigen/CXX11/Tensor:107,

from ../include/RbtRealGrid.h:24,
from ../src/lib/RbtRealGrid.cxx:18:

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h: In␣
→˓instantiation of 'struct Eigen::TensorEvaluator<Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::DefaultDevice>':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:100:65: required␣
→˓from 'struct Eigen::TensorEvaluator<const Eigen::TensorAssignOp<Eigen::Tensor<float, 3,
→˓ 1>, const Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> > >,␣
→˓Eigen::DefaultDevice>'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:416:14: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>& Eigen::Tensor<Scalar_,␣
→˓NumIndices_, Options_, IndexType>::operator=(const OtherDerived&) [with OtherDerived =␣
→˓Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> >; Scalar_ = float; int␣

(continues on next page)

28 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓NumIndices_ = 3; int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:208:56: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:42:71: warning:␣
→˓ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]

42 | PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
| ~~~^~~~

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h: In␣
→˓instantiation of 'struct Eigen::TensorEvaluator<Eigen::Tensor<float, 0, 1>,␣
→˓Eigen::DefaultDevice>':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:100:65: required␣
→˓from 'struct Eigen::TensorEvaluator<const Eigen::TensorAssignOp<Eigen::Tensor<float, 0,
→˓ 1>, const Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const␣
→˓Eigen::DimensionList<long int, 3>, const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::MakePointer> >, Eigen::DefaultDevice>'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:388:14: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:352:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:42:71: warning:␣
→˓ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]
In file included from /usr/include/eigen3/unsupported/Eigen/CXX11/Tensor:141,

from ../include/RbtRealGrid.h:24,
from ../src/lib/RbtRealGrid.cxx:18:

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h: In␣
→˓instantiation of 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> > >]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:417:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>& Eigen::Tensor<Scalar_,␣
→˓NumIndices_, Options_, IndexType>::operator=(const OtherDerived&) [with OtherDerived =␣
→˓Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> >; Scalar_ = float; int␣
→˓NumIndices_ = 3; int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:208:56: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:61:17: warning:␣
→˓ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const Eigen::TensorSelectOp<const␣
→˓Eigen::Tensor<bool, 3, 1>, const Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_
→˓constant_op<float>, const Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3,␣
→˓1> > >, Eigen::DefaultDevice>::PacketReturnType' {aka '__vector(4) float'} [-Wignored-
→˓attributes]

61 | const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression,
→˓ DefaultDevice>::PacketReturnType>::size;

(continues on next page)

2.2. Quick and dirty installation 29

RxDock Documentation, Release 0.1.0

(continued from previous page)

| ^~~~~~~~~~
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h: In␣
→˓instantiation of 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:352:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:61:17: warning:␣
→˓ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >, Eigen::DefaultDevice>
→˓::PacketReturnType' {aka '__vector(4) float'} [-Wignored-attributes]
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h: In␣
→˓instantiation of 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:357:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:61:17: warning:␣
→˓ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const Eigen::TensorReductionOp
→˓<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >, Eigen::DefaultDevice>
→˓::PacketReturnType' {aka '__vector(4) float'} [-Wignored-attributes]
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h: In␣
→˓instantiation of 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::Tensor<float, 3, 1> >]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:407:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>& Eigen::Tensor<Scalar_,␣
→˓NumIndices_, Options_, IndexType>::operator=(const Eigen::Tensor<Scalar_, NumIndices_,␣
→˓Options_, IndexType>&) [with Scalar_ = float; int NumIndices_ = 3; int Options_ = 1;␣
→˓IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:520:63: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:61:17: warning:␣
→˓ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣

(continues on next page)

30 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const Eigen::Tensor<float, 3, 1> >,␣
→˓Eigen::DefaultDevice>::PacketReturnType' {aka '__vector(4) float'} [-Wignored-
→˓attributes]
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h: In␣
→˓instantiation of 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> > >]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:417:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>& Eigen::Tensor<Scalar_,␣
→˓NumIndices_, Options_, IndexType>::operator=(const OtherDerived&) [with OtherDerived =␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >; Scalar_ = float; int NumIndices_ = 3; int Options_ = 1;␣
→˓IndexType_ = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h:847:24: required␣
→˓from 'Derived& Eigen::TensorBase<Derived, AccessLevel>::setConstant(const Scalar&)␣
→˓[with Derived = Eigen::Tensor<float, 3, 1>; int AccessLevel = 1; Eigen::TensorBase
→˓<Derived, AccessLevel>::Scalar = float]'
../src/lib/RbtRealGrid.cxx:200:68: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:61:17: warning:␣
→˓ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const Eigen::TensorCwiseNullaryOp
→˓<Eigen::internal::scalar_constant_op<float>, const Eigen::Tensor<float, 3, 1> > >,␣
→˓Eigen::DefaultDevice>::PacketReturnType' {aka '__vector(4) float'} [-Wignored-
→˓attributes]
In file included from /usr/include/eigen3/unsupported/Eigen/CXX11/Tensor:107,

from ../include/RbtRealGrid.h:24,
from ../src/lib/RbtRealGrid.cxx:18:

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h: In␣
→˓instantiation of 'const int Eigen::TensorEvaluator<const Eigen::TensorSelectOp<const␣
→˓Eigen::Tensor<bool, 3, 1>, const Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_
→˓constant_op<float>, const Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3,␣
→˓1> >, Eigen::DefaultDevice>::PacketSize':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:600:36: ␣
→˓required from 'Eigen::TensorEvaluator<const Eigen::TensorSelectOp<IfArgType,␣
→˓ThenArgType, ElseArgType>, Device>::PacketReturnType Eigen::TensorEvaluator<const␣
→˓Eigen::TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
→˓::packet(Eigen::TensorEvaluator<const Eigen::TensorSelectOp<IfArgType, ThenArgType,␣
→˓ElseArgType>, Device>::Index) const [with int LoadMode = 16; IfArgType = const␣
→˓Eigen::Tensor<bool, 3, 1>; ThenArgType = const Eigen::TensorCwiseNullaryOp
→˓<Eigen::internal::scalar_constant_op<float>, const Eigen::Tensor<float, 3, 1> >;␣
→˓ElseArgType = const Eigen::Tensor<float, 3, 1>; Device = Eigen::DefaultDevice;␣
→˓Eigen::TensorEvaluator<const Eigen::TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
→˓, Device>::PacketReturnType = __vector(4) float; Eigen::TensorEvaluator<const␣
→˓Eigen::TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:141:5: required␣
→˓from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>,␣
→˓Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index) [with LeftArgType = Eigen::Tensor<float, 3, 1>;␣
→˓RightArgType = const Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣

(continues on next page)

2.2. Quick and dirty installation 31

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> >; Device =␣
→˓Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:68:11: ␣
→˓required from 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 3, 1>, const␣
→˓Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> > >]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:417:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>& Eigen::Tensor<Scalar_,␣
→˓NumIndices_, Options_, IndexType>::operator=(const OtherDerived&) [with OtherDerived =␣
→˓Eigen::TensorSelectOp<const Eigen::Tensor<bool, 3, 1>, const␣
→˓Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float>, const␣
→˓Eigen::Tensor<float, 3, 1> >, const Eigen::Tensor<float, 3, 1> >; Scalar_ = float; int␣
→˓NumIndices_ = 3; int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:208:56: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:572:20:␣
→˓warning: ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]
572 | static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

| ^~~~~~~~~~
In file included from /usr/include/eigen3/unsupported/Eigen/CXX11/Tensor:109,

from ../include/RbtRealGrid.h:24,
from ../src/lib/RbtRealGrid.cxx:18:

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h: In␣
→˓instantiation of 'const int Eigen::TensorEvaluator<const Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>, Eigen::DefaultDevice>::PacketSize':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:613:5: ␣
→˓required from 'Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,
→˓ MakePointer_>, Device>::PacketReturnType Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>, Device>
→˓::packet(Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,␣
→˓MakePointer_>, Device>::Index) const [with int LoadMode = 0; Op =␣
→˓Eigen::internal::MinReducer<float>; Dims = const Eigen::DimensionList<long int, 3>;␣
→˓ArgType = const Eigen::Tensor<float, 3, 1>; MakePointer_ = Eigen::MakePointer; Device␣
→˓= Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims,
→˓ XprType, MakePointer_>, Device>::PacketReturnType = __vector(4) float;␣
→˓Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>,
→˓ Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:141:5: required␣
→˓from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>,␣
→˓Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index) [with LeftArgType = Eigen::Tensor<float, 0, 1>;␣
→˓RightArgType = const Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>,␣
→˓const Eigen::DimensionList<long int, 3>, const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::MakePointer>; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:68:11: ␣
→˓required from 'static void Eigen::internal::TensorExecutor<Expression,␣

(continues on next page)

32 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:352:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:397:20:␣
→˓warning: ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]
397 | static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

| ^~~~~~~~~~
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h: In␣
→˓instantiation of 'const int Eigen::TensorEvaluator<const Eigen::TensorReductionOp
→˓<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>, Eigen::DefaultDevice>::PacketSize':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:613:5: ␣
→˓required from 'Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,
→˓ MakePointer_>, Device>::PacketReturnType Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>, Device>
→˓::packet(Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,␣
→˓MakePointer_>, Device>::Index) const [with int LoadMode = 0; Op =␣
→˓Eigen::internal::MaxReducer<float>; Dims = const Eigen::DimensionList<long int, 3>;␣
→˓ArgType = const Eigen::Tensor<float, 3, 1>; MakePointer_ = Eigen::MakePointer; Device␣
→˓= Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims,
→˓ XprType, MakePointer_>, Device>::PacketReturnType = __vector(4) float;␣
→˓Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>,
→˓ Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:141:5: required␣
→˓from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>,␣
→˓Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index) [with LeftArgType = Eigen::Tensor<float, 0, 1>;␣
→˓RightArgType = const Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>,␣
→˓const Eigen::DimensionList<long int, 3>, const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::MakePointer>; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:68:11: ␣
→˓required from 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'

(continues on next page)

2.2. Quick and dirty installation 33

RxDock Documentation, Release 0.1.0

(continued from previous page)

../src/lib/RbtRealGrid.cxx:357:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:397:20:␣
→˓warning: ignoring attributes on template argument 'Eigen::PacketType<float,␣
→˓Eigen::DefaultDevice>::type' {aka '__vector(4) float'} [-Wignored-attributes]
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h: In␣
→˓instantiation of 'static typename Self::CoeffReturnType␣
→˓Eigen::internal::InnerMostDimReducer<Self, Op, true>::reduce(const Self&, typename␣
→˓Self::Index, typename Self::Index, Op&) [with Self = Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>,␣
→˓Eigen::DefaultDevice>; Op = Eigen::internal::MinReducer<float>; typename␣
→˓Self::CoeffReturnType = float; typename Self::Index = long int]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:627:68: ␣
→˓required from 'Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,
→˓ MakePointer_>, Device>::PacketReturnType Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>, Device>
→˓::packet(Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,␣
→˓MakePointer_>, Device>::Index) const [with int LoadMode = 0; Op =␣
→˓Eigen::internal::MinReducer<float>; Dims = const Eigen::DimensionList<long int, 3>;␣
→˓ArgType = const Eigen::Tensor<float, 3, 1>; MakePointer_ = Eigen::MakePointer; Device␣
→˓= Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims,
→˓ XprType, MakePointer_>, Device>::PacketReturnType = __vector(4) float;␣
→˓Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>,
→˓ Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:141:5: required␣
→˓from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>,␣
→˓Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index) [with LeftArgType = Eigen::Tensor<float, 0, 1>;␣
→˓RightArgType = const Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>,␣
→˓const Eigen::DimensionList<long int, 3>, const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::MakePointer>; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:68:11: ␣
→˓required from 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MinReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:352:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:169:15:␣
→˓warning: ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MinReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>,␣
→˓Eigen::DefaultDevice>::PacketReturnType' {aka '__vector(4) float'} [-Wignored-
→˓attributes]
169 | const int packetSize = internal::unpacket_traits<typename␣

(continues on next page)

34 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓Self::PacketReturnType>::size;
| ^~~~~~~~~~

/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h: In␣
→˓instantiation of 'static typename Self::CoeffReturnType␣
→˓Eigen::internal::InnerMostDimReducer<Self, Op, true>::reduce(const Self&, typename␣
→˓Self::Index, typename Self::Index, Op&) [with Self = Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>,␣
→˓Eigen::DefaultDevice>; Op = Eigen::internal::MaxReducer<float>; typename␣
→˓Self::CoeffReturnType = float; typename Self::Index = long int]':
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:627:68: ␣
→˓required from 'Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,
→˓ MakePointer_>, Device>::PacketReturnType Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>, Device>
→˓::packet(Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType,␣
→˓MakePointer_>, Device>::Index) const [with int LoadMode = 0; Op =␣
→˓Eigen::internal::MaxReducer<float>; Dims = const Eigen::DimensionList<long int, 3>;␣
→˓ArgType = const Eigen::Tensor<float, 3, 1>; MakePointer_ = Eigen::MakePointer; Device␣
→˓= Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims,
→˓ XprType, MakePointer_>, Device>::PacketReturnType = __vector(4) float;␣
→˓Eigen::TensorEvaluator<const Eigen::TensorReductionOp<Op, Dims, XprType, MakePointer_>,
→˓ Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:141:5: required␣
→˓from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>,␣
→˓Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType,␣
→˓RhsXprType>, Device>::Index) [with LeftArgType = Eigen::Tensor<float, 0, 1>;␣
→˓RightArgType = const Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>,␣
→˓const Eigen::DimensionList<long int, 3>, const Eigen::Tensor<float, 3, 1>,␣
→˓Eigen::MakePointer>; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const␣
→˓Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index = long int]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:68:11: ␣
→˓required from 'static void Eigen::internal::TensorExecutor<Expression,␣
→˓Eigen::DefaultDevice, true>::run(const Expression&, const Eigen::DefaultDevice&) [with␣
→˓Expression = const Eigen::TensorAssignOp<Eigen::Tensor<float, 0, 1>, const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer> >]'
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h:389:65: required from
→˓'Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>::Tensor(const␣
→˓Eigen::TensorBase<OtherDerived, 0>&) [with OtherDerived = Eigen::TensorReductionOp
→˓<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList<long int, 3>, const␣
→˓Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>; Scalar_ = float; int NumIndices_ = 0;␣
→˓int Options_ = 1; IndexType_ = long int]'
../src/lib/RbtRealGrid.cxx:357:70: required from here
/usr/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h:169:15:␣
→˓warning: ignoring attributes on template argument 'Eigen::TensorEvaluator<const␣
→˓Eigen::TensorReductionOp<Eigen::internal::MaxReducer<float>, const Eigen::DimensionList
→˓<long int, 3>, const Eigen::Tensor<float, 3, 1>, Eigen::MakePointer>,␣
→˓Eigen::DefaultDevice>::PacketReturnType' {aka '__vector(4) float'} [-Wignored-
→˓attributes]
[130/154] Compiling C++ object 'rxdock@sha/src_lib_RbtVdwSF.cxx.o'.
../src/lib/RbtVdwSF.cxx: In member function 'void RbtVdwSF::Setup()':
../src/lib/RbtVdwSF.cxx:364:36: warning: 'alphai' may be used uninitialized in this␣

(continues on next page)

2.2. Quick and dirty installation 35

RxDock Documentation, Release 0.1.0

(continued from previous page)

→˓function [-Wmaybe-uninitialized]
364 | double D = 0.345 * Ii * Ij * alphai * alphaj / (Ii + Ij);

| ~~~~~~~~~~~~~~~~^~~~~~~~
../src/lib/RbtVdwSF.cxx:364:60: warning: 'Ii' may be used uninitialized in this function␣
→˓[-Wmaybe-uninitialized]
364 | double D = 0.345 * Ii * Ij * alphai * alphaj / (Ii + Ij);

| ~~~~^~~~~
[154/154] Linking target unit-test.

Run the tests, also using the ninja command, but this time with the argument test:

$ ninja -C builddir test
ninja: Entering directory 'builddir'
[0/1] Running all tests.
1/5 rbcavity-1koc OK 0.87 s
2/5 rbcavity-1yet OK 6.68 s
3/5 rbcavity-1yet-test OK 6.29 s
4/5 unit-test OK 11.84 s
5/5 rbdock-1yet-test OK 1.77 s

Ok: 5
Expected Fail: 0
Fail: 0
Unexpected Pass: 0
Skipped: 0
Timeout: 0

Full log written to /home/pnikolic/rxdock/builddir/meson-logs/testlog.txt

If everything went fine, your system is up to date, and you followed these instructions to the letter – congratulations!
RxDock is now successfully built and tested on your desktop or laptop computer, and you can start using it immediately.

To check where your RxDock is built, go to your rxdock directory and run pwd:

$ pwd
/home/pnikolic/rxdock

In order to start using RxDock, we have to set up a working environment. Go back to your home directory in the current
terminal or open up a new terminal.

$ cd

Make a new directory called training, and enter it.

$ mkdir training
$ cd training

Remember the path we obtained via the pwd command? Now is the time to use it. Execute the following instructions
and modify the RBT_ROOT path to correspond to that path, in the same manner, the code below corresponds to my path
in the shown above.

$ export RBT_ROOT=/home/pnikolic/rxdock
$ export PATH=$RBT_ROOT/bin:$PATH
$ export PERL5LIB=$RBT_ROOT/lib:$PERL5LIB

(continues on next page)

36 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

$ export PATH=$RBT_ROOT/builddir:$PATH
$ export LD_LIBRARY_PATH=$RBT_ROOT/builddir:$LD_LIBRARY_PATH

Let us verify that the RxDock is properly installed and the working environment is properly set up by running rbcavity
and rbdock commands with the parameter --help or -h:

$ rbcavity -h

The RxDock molecular docking program is licensed under GNU LGPL version 3.
RxDock is maintained by Vedran Miletić, Patrik Nikolić, and Luka Vretenar.
Visit https://rxdock.gitlab.io/ for more information.
Executable: rbcavity/0.1.0
Library: librxdock.so/0.1.0
RBT_ROOT: /home/pnikolic/rxdock
RBT_HOME: /home/pnikolic
Current dir: /home/pnikolic/rxdock
Date: Thu Jan 27 22:02:56 2022

rbcavity - calculate docking cavities
Usage:

rbcavity [OPTION...]

-r, --receptor-param arg receptor param file (contains active site
params)

-W, --write-docking-cavities write docking cavities (plus distance grid)
to .as file

-R, --read-docking-cavities read docking cavities (plus distance grid)
from .as file

-d, --write-insightii-grids dump InsightII grids for each cavity for
visualisation

-v, --write-psf-crd dump target PSF/CRD files for rDock Viewer
-l, --list-atoms-dist arg list receptor atoms within specified distance

of any cavity (in angstrom) (default: 5.0)
-s, --print-site print SITE descriptors (counts of exposed

atoms)
-b, --border arg set the border around the cavities for the

distance grid (in angstrom) (default: 8.0)
-m, --write-moe-grid write active site into a MOE grid
-h, --help Print help

$ rbdock -h

The RxDock molecular docking program is licensed under GNU LGPL version 3.
RxDock is maintained by Vedran Miletić, Patrik Nikolić, and Luka Vretenar.
Visit https://rxdock.gitlab.io/ for more information.
Executable: rbdock/0.1.0
Library: librxdock.so/0.1.0
RBT_ROOT: /home/pnikolic/rxdock
RBT_HOME: /home/pnikolic
Current dir: /home/pnikolic/rxdock
Date: Thu Jan 27 22:03:11 2022

(continues on next page)

2.2. Quick and dirty installation 37

RxDock Documentation, Release 0.1.0

(continued from previous page)

rbdock - docking engine
Usage:

rbdock [OPTION...]

-i, --input arg input ligand SD file
-o, --output arg output file name(s) prefix
-r, --receptor-param arg receptor parameter file
-p, --docking-param arg docking protocol parameter file
-n, --number arg number of runs per ligand (0 = unlimited)

(default: 0)
-P, --protonate protonate all neutral amines, guanidines,

imidazoles
-D, --deprotonate deprotonate all carboxylic, sulphur and

phosphorous acid groups
-H, --all-hydrogens read all hydrogens present instead of only polar

hydrogens
-t, --threshold arg score threshold
-C, --continue continue if score threshold is met instead of

terminating ligand
-f, --filter arg filter file name
-T, --trace arg controls output level for debugging (0 = minimal,

>0 = more verbose) (default: 0)
-s, --seed arg random number seed to use instead of

std::random_device
-h, --help Print help

There are other programs as well. You can follow the Docking in 3 steps part of the documentation from here on. Just be
careful with -was and -ras parameters for rbcavity which were removed and replaced with -W and -R, respectively.
Don’t worry too much, if you forget and use -was or -ras, rbcavity will warn you about the removal and suggest
what parameters to use instead.

And that’s it! You have your RxDock properly built and your workspace is properly set up. Just remember that you have
to set up your working environment every time you start working. That means every time you reboot your computer,
log out and then back in, close the terminal and open it again, etc. you have to write those five lines of code above. To
avoid that, you can put them into your shell configuration (.bashrc file in your home directory, in my case /home/
pnikolic).

Should you have any questions, do not hesitate to reach out to the RxDock community on the issue tracker, but please
search for similar issues first.

Happy docking!

2.3 Prerequisites

2.3.1 Compilers

RxDock is supplied as source code, which means that you will have to compile the binary files (run-time libraries and
executable programs) before you use them. RxDock has been developed largely on the Linux operating systems, most
recently with GNU g++ compiler (tested under openSUSE 11.3). The code will almost certainly compile and run under
other Linux distributions with little or no modification. For the moment, it has been tested in the latest Ubuntu and
openSUSE releases for both 32 and 64 bits system architectures (by November 2013) and compilation was possible
without any code modification. However, no other distributions or compilers have been tested extensively to date.

38 Chapter 2. Getting started guide

https://gitlab.com/rxdock/rxdock/-/issues

RxDock Documentation, Release 0.1.0

For full production use, you would typically compile RxDock on a separate build machine and run the docking calcu-
lations on a cluster of compute machines. However, for the purposes of getting started, these instructions assume that
you will be compiling RxDock and running the initial validation experiments on the same machine.

2.3.2 Required packages

Make sure you have the following packages installed on your machine before you continue. The versions listed are
appropriate for openSUSE 11.3; other versions may be required for your particular Linux distribution.

Table 2.1: Required packages for building and running RxDock

Package Description Required at Version
gcc GNU C compiler Compile-time >=3.3.4
g++ GNU C++ compiler Compile-time >=3.3.4
gtest Google’s C++ unit testing framework Compile-time >=1.8.0
gtest-devel Development files for gtest Compile-time >=1.8.0

2.4 Unpacking the distribution files

The RxDock source files and test suite files are provided as independent gzipped tar (.tar.gz) distributions. Depending
on your requirements, the two distributions can be unpacked to entirely separate locations, or can be unpacked under
the same location. In this example they are unpacked under the same location.

Table 2.2: RxDock distribution files

File Description
rxdock-[CODELINE].tar.gz RxDock source distribution
[TEST]_rDock_TestSet.tar.gz Test suite data files and scripts

Here [CODELINE], and [TEST] will vary depending on the release and test set. [CODELINE] represents the major
version string (for example, 0.1.0) and [TEST] represents the given dataset (ASTEX, RNA or DUD).

2.4.1 Example unpacking procedure

Create a new directory for building RxDock.

$ mkdir ~/dev

The directory you created is referred to as [BUILDDIR] in the subsequent steps.

Copy or download the distribution files to [BUILDDIR].

$ cp ~/mydownloads/rxdock-0.1.0.tar.gz ~/dev/

Extract the distributions.

$ cd ~/dev/
$ tar -xvzf rxdock-0.1.0.tar.gz

2.4. Unpacking the distribution files 39

RxDock Documentation, Release 0.1.0

The distributions contain files with relative path names, and you should find the following subdirectories created under
rxdock-[CODELINE]. Note that the ./rxdock-0.1.0 subdirectory may have a different name depending on the major
version string (see above).

$ find . -type d
.
./fw
./src
./src/daylight
./src/lib
./src/exe
./src/GP
./build
./build/test
./build/test/RBT_HOME
./build/tmakelib
./build/tmakelib/linux-pathCC-64
./build/tmakelib/linux-g++-64
./build/tmakelib/linux-g++
./build/tmakelib/unix
./data
./data/filters
./data/sf
./data/pmf
./data/pmf/smoothed
./data/scripts
./lib
./import
./import/tnt
./import/tnt/include
./import/simplex
./import/simplex/src
./import/simplex/include
./docs
./docs/images
./docs/newDocs
./include
./include/GP
./bin

Make a note of the following locations for later use.

The RxDock root directory is [BUILDDIR]/rxdock-[CODELINE] and will be referred to as [RBT_ROOT] in later
instructions. In this example, [RBT_ROOT] is ~/dev/rxdock-0.1.0/.

40 Chapter 2. Getting started guide

RxDock Documentation, Release 0.1.0

2.5 Building

RxDock is written in C++ (with a small amount of C code from Numerical Recipes) and makes heavy use of the C++
Standard Template Library (STL). The majority of the source code is compiled into a single shared library (libRbt.so).
The executable programs themselves are relatively light-weight command-line applications linked with libRbt.so.

The tmake build systems (from Trolltech) is used to generate makefiles automatically for a particular build target (i.e.
combination of operating system and compiler). The source distribution comes with tmake templates defining the
compiler options and flags for three Linux build targets (linux-g++ and linux-g++-64). The build targets have been
tested under openSUSE 11.3 (2.6.34.10-0.2 kernel) with GNU g++ (versions 3.3.4, 4.5.0, and 4.7.2).

Table 2.3: Standard tmake build targets provided

Target Name Architecture Compiler Compiler flags (release build)
linux-g++ 32-bit g++ -m32 -O3 -ffast-math
linux-g++-64 64-bit g++ -m64 -O3 -ffast-math

2.5.1 Customising the tmake template for a build target

If none of the tmake templates are suitable for your machine, or if you wish to customise the compiler options, you
should first customise one of the existing templates. The tmake template files are stored under [RBT_ROOT]/build/
tmakelib/. Locate and edit the tmake.conf file for the build target you wish to customise. For example, to customise
the linux-g++ build target, edit [RBT_ROOT]/build/tmakelib/linux-g++/tmake.conf and localise the values
to suit your compiler.

2.5.2 Build procedure

To build RxDock, first go to the [RBT_ROOT]/build/ directory.

$ cd [RBT_ROOT]/build

Compile

Make one of the build targets listed below.

$ make linux-g++
$ make linux-g++-64

Test

Run the RxDock unit tests to check build integrity. If no failed tests are reported you should be all set.

$ make test

2.5. Building 41

RxDock Documentation, Release 0.1.0

Cleanup (optional)

To remove all intermediate build files from [RBT_ROOT]/build/, leaving just the final executables (in [RBT_ROOT]/
bin/) and shared libraries (in [RBT_ROOT]/lib/):

$ make clean

To remove the final executables and shared libraries as well, returning to a source-only distribution:

$ make distclean

2.6 Validation experiments

In this section you will find the instructions about how to reproduce our validation experiments using different test sets.
Three different sets were analyzed for three different purposes:

• ASTEX set for binding mode prediction in proteins.

• RNA set for assess RNA-ligand docking.

• DUD set for database enrichment.

2.6.1 Binding mode prediction in proteins

First of all, please go to ASTEX set SourceForge download page to download a compressed file with the necessary
data.

After downloading the file ASTEX_rDock_TestSet.tar.gz, uncompress the file with the following command, which
will create a folder called ASTEX_rDock_TestSet:

$ tar -xvzf ASTEX_rDock_TestSet.tar.gz
$ cd ASTEX_rDock_TestSet/

Here you will have the instructions for one of the systems (1sj0), to run with the rest of the systems, just change the
pdb code with the one desired. Then, make sure that the necessary environmental variables for running RxDock are
well defined and run the following commands for entering to the folder and running RxDock with the same settings
that we have used:

$ cd 1sj0/

#first create the cavity using rbcavity
$ rbcavity -r 1sj0_rdock.prm -was > 1sj0_cavity.log

#then use rbdock to run docking
$ rbdock -r 1sj0_rdock.prm -p dock.prm -n 100 -i 1sj0_ligand.sd \
-o 1sj0_docking_out > 1sj0_docking_out.log

#sdsort for sorting the results according to their score
$ sdsort -n -f'SCORE' 1sj0_docking_out.sd > 1sj0_docking_out_sorted.sd

#calculate rmsd from the output comparing with the crystal structure of the ligand
$ sdrmsd 1sj0_ligand.sd 1sj0_docking_out_sorted.sd

42 Chapter 2. Getting started guide

https://sourceforge.net/projects/rdock/files/Validation_Sets/ASTEX_rDock_TestSet.tar.gz/download

RxDock Documentation, Release 0.1.0

2.6.2 Binding mode prediction in RNA

In a similar way of the section above, here you will find a brief tutorial on how to run RxDock with the RNA TestSet used
in the validation. As in the first section, please go to RNA set SourceForge download page to download a compressed
file with the necessary data.

After downloading the file RNA_rDock_TestSet.tar.gz, uncompress the file with the following command, which
will create a folder called RNA_rDock_TestSet:

$ tar -xvzf RNA_rDock_TestSet.tar.gz
$ cd RNA_rDock_TestSet/

Here you will have the instructions for one of the systems (1nem), to run with the rest of the systems, just change the
pdb code with the one desired. Then, make sure that the necessary environmental variables for running RxDock are
well defined and run the following commands for entering to the folder and running RxDock with the same settings
that we have used (if you have run the previous set, the variables should already be correctly defined):

$ cd 1nem/

#first create the cavity using rbcavity
$ rbcavity -r 1nem_rdock.prm -was > 1nem_cavity.log

#then use rbdock to run docking
$ rbdock -r 1nem_rdock.prm -p dock.prm -n 100 -i 1nem_lig.sd \
-o 1nem_docking_out > 1nem_docking_out.log

#sdsort for sorting the results according to their score
$ sdsort -n -f'SCORE' 1nem_docking_out.sd > 1nem_docking_out_sorted.sd

#calculate rmsd from the output comparing with the crystal structure of the ligand
$ sdrmsd 1nem_lig.sd 1nem_docking_out_sorted.sd

2.6.3 Database enrichment (actives vs. decoys – for HTVS)

In this section you will find a brief tutorial on how to run RxDock with the DUD test set used in the validation and how
to perform different analysis of the results. As in the sections above, please go to DUD set SourceForge download page
to download a compressed file with the necessary data.

After downloading the file DUD_rDock_TestSet.tar.gz, uncompress the file with the following command, which
will create a folder called DUD_rDock_TestSet:

$ tar -xvzf DUD_rDock_TestSet.tar.gz
$ cd DUD_rDock_TestSet/

Here you will have the instructions for one of the systems (hivpr), to run with the rest of the systems, just change
the DUD system code with the one desired. Then, make sure that the necessary environmental variables for running
RxDock are well defined and run the following commands for entering to the folder and running RxDock with the same
settings that we have used (if you have run the previous sets, the variables should already be correctly defined):

$ cd hivpr/

#first create the cavity using rbcavity
$ rbcavity -r hivpr_rdock.prm -was > hivpr_cavity.log

2.6. Validation experiments 43

https://sourceforge.net/projects/rdock/files/Validation_Sets/RNA_rDock_TestSet.tar.gz/download
https://sourceforge.net/projects/rdock/files/Validation_Sets/DUD_rDock_TestSet.tar.gz/download

RxDock Documentation, Release 0.1.0

As the number of ligands to dock is very high, we suggest you to use any distributed computing environments, such
as SGE or Condor, and configure RxDock to run in multiple CPUs. Namely, split the input ligands file in as many
parts as desired (very easy using sdsplit tool) and run independent RxDock docking jobs for each “splitted” input
file. However, for this example purpose, you will have the instructions for running all set of actives and decoys in one
docking job:

#uncompress ligand file
$ gunzip hivpr_ligprep.sdf.gz

#use rbdock to run docking
$ rbdock -r hivpr_rdock.prm -p dock.prm -n 100 -i hivpr_ligprep.sdf \
-o hivpr_docking_out > hivpr_docking_out.log

#sdsort with -n and -s flags will sort internally each ligand by increasing
#score and sdfilter will get only the first entry of each ligand
$ sdsort -n -s -fSCORE hivpr_docking_out.sd | sdfilter \
-f'$_COUNT == 1' > hivpr_1poseperlig.sd

#sdreport will print all the scores of the output in a tabular format and,
#with command awk, we will format the results
$ sdreport -t hivpr_1poseperlig.sd | awk '{print $2,$3,$4,$5,$6,$7}' > dataforR_uq.txt

At this point, you should have a file called hivpr_docking_out.sd with all docking poses written by RxDock (100
* number of input ligands), a file called hivpr_1poseperlig.sd with the best scored docking pose for each ligand
and a file called dataforR_uq.txt that will be used for calculating ROC curves using R. The next step is to calculate
ROC curves and other statistics. To do so, please visit section Calculating ROC curves and jump to the subsection “R
commands for generating ROC curves”.

44 Chapter 2. Getting started guide

CHAPTER

THREE

REFERENCE GUIDE

In this section you can find the documentation containing full explanation of all RxDock software package and features.

For installation details and first-users instructions, please visit Installation and Getting started sections.

3.1 Preface

It is intended to develop this document into a full reference guide for the RxDock platform, describing the software tools,
parameter files, scoring functions, and search engines. The reader is encouraged to cross-reference the descriptions
with the corresponding source code files to discover the finer implementation details.

3.2 Acknowledgements

No third-party C++ libraries or executables are included within the source code. We acknowledge Matthieu Brucher,
the author of Audio ToolKit, for his guidance on the implementation of the Nelder-Mead method in C++ using the
Eigen library.

3.3 Introduction

The RxDock platform is a suite of command-line tools for high-throughput docking and virtual screening. The pro-
grams and methods were developed and validated from 1998 to 2002 at RiboTargets (more recently, Vernalis) for
proprietary use. The original program (RiboDock) was designed for high-throughput virtual screening of large ligand
libraries against RNA targets, in particular the bacterial ribosome. Since 2002 the programs have been substantially
rewritten and validated for docking of drug-like ligands to protein and RNA targets. A variety of experimental restraints
can be incorporated into the docking calculation, in support of an integrated structure-based drug design process. In
2006, the software was licensed to the University of York for maintenance and distribution under the name rDock and,
in 2012, Vernalis and the University of York agreed to release the program as open-source software.

rDock is licensed under GNU LGPL version 3.0 with support from the University of Barcelona – rdock.sourceforge.net.

Last change to rDock was made in 2014. RxDock is an actively developed fork of rDock started by RxTx in 2019.

45

http://blog.audio-tk.com/
http://www.audio-tk.com/
http://blog.audio-tk.com/2012/07/17/just-a-small-example-of-numerical-optimization-in-c/
http://blog.audio-tk.com/2012/07/17/just-a-small-example-of-numerical-optimization-in-c/
http://rdock.sourceforge.net/
https://rxtxresearch.github.io/

RxDock Documentation, Release 0.1.0

3.4 Configuration

Before launching RxDock, make sure the following environment variables are defined. Precise details are likely to be
site-specific.

• RBT_ROOT environment variable: should be defined to point to the RxDock installation directory.

• RBT_HOME environment variable: is optional, but can be defined to to point to a user project directory containing
RxDock input files and customised data files.

• PATH environment variable: $RBT_ROOT/bin should be added to the $PATH environment variable.

• LD_LIBRARY_PATH: $RBT_ROOT/lib should be added to the $LD_LIBRARY_PATH environment variable.

3.4.1 Input file locations

The search path for the majority of input files for RxDock is:

• Current working directory

• $RBT_HOME, if defined

• The appropriate subdirectory of $RBT_ROOT/data/. For example, the default location for scoring function files
is $RBT_ROOT/data/sf/.

The exception is that input ligand SD files are always specified as an absolute path. If you wish to customise a scoring
function or docking protocol, it is sufficient to copy the relevant file to the current working directory or to $RBT_HOME,
and to modify the copied file.

3.4.2 Launching executables

For small scale experimentation, the RxDock executables can be launched directly from the command line. However,
serious virtual screening campaigns will likely need access to a compute farm. In common with other docking tools,
RxDock uses the embarrassingly parallel approach to distributed computing. Large ligand libraries are split into smaller
chunks, each of which is docked independently on a single machine. Docking jobs are controlled by a distributed
resource manager (DRM) such as Condor or SGE.

3.5 Cavity mapping

Virtual screening is very rarely conducted against entire macromolecules. The usual practice is to dock small molecules
in a much more confined region of interest. RxDock makes a clear distinction between the region the ligand is allowed to
explore (known here as the docking site), and the receptor atoms that need to be included in order to calculate the score
correctly. The former is controlled by the cavity mapping algorithm, whilst the latter is scoring function dependent as
it depends on the distance range of each component term (for example, vdW range >> polar range). For this reason, it is
usual practice with RxDock to prepare intact receptor files (rather than truncated spheres around the region of interest),
and to allow each scoring function term to isolate the relevant receptor atoms within range of the docking site.

RxDock provides two methods for defining the docking site:

• Two sphere method

• Reference ligand method

The two methods are explained and illustrated below using PDB structure 2hr1.

46 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Note: All the keywords found in capital letters in following cavity mapping methods explanation (e.g. RADIUS), make
reference to the parameters defined in prm RxDock configuration file. For more information, go to Cavity mapping
subsection in System definition file section.

3.5.1 Two sphere method

The two sphere method aims to find cavities that are accessible to a small sphere (of typical atomic or solvent radius)
but are inaccessible to a larger sphere. The larger sphere probe will eliminate flat and convex regions of the receptor
surface, and also shallow cavities. The regions that remain and are accessible to the small sphere are likely to be the
nice well defined cavities of interest for drug design purposes.

The method is explained and illustrated in Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.5, Figure 3.6, and
Figure 3.7.

Fig. 3.1: A grid is placed over the cavity mapping region, encompassing a sphere of radius = RADIUS, center = CENTER.
Cavity mapping is restricted to this sphere. All cavities located will be wholly within this sphere. Any cavity that would
otherwise protrude beyond the cavity mapping sphere will be truncated at the periphery of the sphere.

3.5. Cavity mapping 47

RxDock Documentation, Release 0.1.0

Fig. 3.2: Grid points within the volume occupied by the receptor are excluded (coloured red). The radii of the receptor
atoms are increased temporarily by VOL_INCR in this step.

48 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Fig. 3.3: Probes of radii LARGE_SPHERE are placed on each remaining unallocated grid point and checked for clashes
with receptor excluded volume. To eliminate edge effects, the grid is extended beyond the cavity mapping region by
the diameter of the large sphere (for this step only). This allows the large probe to be placed on grid points outside of
the cavity mapping region, yet partially protrude into the cavity mapping region.

3.5. Cavity mapping 49

RxDock Documentation, Release 0.1.0

Fig. 3.4: All grid points within the cavity mapping region that are accessible to the large probe are excluded (coloured
green).

50 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Fig. 3.5: Probes of radii SMALL_SPHERE are placed on each remaining grid point and checked for clashes with receptor
excluded volume (red) or large probe excluded volume (green).

3.5. Cavity mapping 51

RxDock Documentation, Release 0.1.0

Fig. 3.6: All grid points that are accessible to the small probe are selected (yellow).

52 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Fig. 3.7: The final selection of cavity grid points is divided into distinct cavities (contiguous regions). In this example
only one distinct cavity is found. User-defined filters of MIN_VOLUME and MAX_CAVITIES are applied at this stage to
select a subset of cavities if required. Note that the filters will accept or reject intact cavities only.

3.5. Cavity mapping 53

RxDock Documentation, Release 0.1.0

3.5.2 Reference ligand method

The reference ligand method provides a much easier option to define a docking volume of a given size around the
binding mode of a known ligand, and is particularly appropriate for large scale automated validation experiments.

The method is explained and illustrated in Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11.

Fig. 3.8: Reference coordinates are read from REF_MOL. A grid is placed over the cavity mapping region, encompassing
overlapping spheres of radius = RADIUS, centered on each atom in REF_MOL. Grid points outside of the overlapping
spheres are excluded (coloured green). Grid points within the volume occupied by the receptor are excluded (coloured
red). The vdW radii of the receptor atoms are increased by VOL_INCR in this step.

54 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Fig. 3.9: Probes of radii SMALL_SPHERE are placed on each remaining grid point and checked for clashes with red or
green regions.

3.5. Cavity mapping 55

RxDock Documentation, Release 0.1.0

Fig. 3.10: All grid points that are accessible to the small probe are selected (yellow).

56 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Fig. 3.11: The final selection of cavity grid points is divided into distinct cavities (contiguous regions). In this example
only one distinct cavity is found. User-defined filters of MIN_VOLUME and MAX_CAVITIES are applied at this stage to
select a subset of cavities if required. Note that the filters will accept or reject intact cavities only.

3.5. Cavity mapping 57

RxDock Documentation, Release 0.1.0

3.6 Scoring functions

3.6.1 Component scoring functions

The RxDock master scoring function (𝑆total) is a weighted sum of intermolecular (𝑆inter), ligand intramolecular (𝑆intra),
site intramolecular (𝑆site), and external restraint terms (𝑆restraint) (3.1). 𝑆inter is the main term of interest as it represents
the protein-ligand (or RNA-ligand) interaction score (3.2). 𝑆intra represents the relative energy of the ligand conforma-
tion (3.3). Similarly, 𝑆site represents the relative energy of the flexible regions of the active site (3.4). In the current
implementation, the only flexible bonds in the active site are terminal OH and NH3+ bonds. 𝑆restraint is a collection of
non-physical restraint functions that can be used to bias the docking calculation in several useful ways (3.5).

𝑆total = 𝑆inter + 𝑆intra + 𝑆site + 𝑆restraint (3.1)

𝑆inter = 𝑊 inter
vdW · 𝑆inter

vdW +𝑊 inter
polar · 𝑆inter

polar +𝑊 inter
repul · 𝑆inter

repul +𝑊 inter
arom · 𝑆inter

arom+

+𝑊solv · 𝑆solv +𝑊rot ·𝑁rot +𝑊const
(3.2)

𝑆intra = 𝑊 intra
vdW · 𝑆intra

vdW +𝑊 intra
polar · 𝑆intra

polar +𝑊 intra
repul · 𝑆intra

repul +𝑊 intra
dihedral · 𝑆intra

dihedral (3.3)

𝑆site = 𝑊 site
vdW · 𝑆site

vdW +𝑊 site
polar · 𝑆site

polar +𝑊 site
repul · 𝑆site

repul +𝑊 site
dihedral · 𝑆site

dihedral (3.4)

𝑆restraint = 𝑊cavity · 𝑆cavity +𝑊tether · 𝑆tether +𝑊nmr · 𝑆nmr +𝑊ph4 · 𝑆ph4 (3.5)

𝑆inter, 𝑆intra, and 𝑆site are built from a common set of constituent potentials, which are described below. The main
changes to the original RiboDock scoring function [RiboDock2004] are:

i. the replacement of the crude steric potentials (𝑆lipo and 𝑆rep) with a true van der Waals potential, 𝑆vdW

ii. the introduction of two generalised terms for all short range attractive (𝑆polar) and repulsive (𝑆repul) polar inter-
actions

iii. the implementation of a fast weighed solvent accessible surface (WSAS) area solvation term

iv. the addition of explicit dihedral potentials

van der Waals potential

We have replaced the 𝑆lipo and 𝑆rep empirical potentials used in RiboDock with a true vdW potential similar to that
used by GOLD [GOLD2005]. Atom types and vdW radii were taken from the Tripos 5.2 force field and are listed
in the Appendix section (Table 3.18). Energy well depths are switchable between the original Tripos 5.2 values and
those used by GOLD, which are calculated from the atomic polarisability and ionisation potentials of the atom types
involved. Additional atom types were created for carbons with implicit hydrogens, as the Tripos force field uses an
all-atom representation. vdW radii for implicit hydrogen types are increased by 0.1 Å for each implicit hydrogen, with
well depths unchanged. The functional form is switchable between a softer 4-8 and a harder 6-12 potential. A quadratic
potential is used at close range to prevent excessive energy penalties for atomic clashes. The potential is truncated at
longer range (1.5 · 𝑟min, the sum of the vdW radii).

The quadratic potential is used at repulsive energies between 𝑒cutoff and 𝑒0, where 𝑒cutoff is defined as a multiple of
the energy well depth (𝑒cutoff = ECUT · 𝑒min), and 𝑒0 is the energy at zero separation, defined as a multiple of 𝑒cutoff
(𝑒0 = E0 · 𝑒cutoff). ECUT can vary between 1 and 120 during the docking search (see Genetic algorithm subsection in
Docking protocol section), whereas E0 is fixed at 1.5.

58 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Empirical attractive and repulsive polar potentials

We continue to use an empirical Bohm-like potential to score hydrogen-bonding and other short-range polar interac-
tions. The original RiboDock polar terms (𝑆H-bond, 𝑆posC-acc, 𝑆acc-acc, 𝑆don-don) are generalised and condensed into two
scoring functions, 𝑆polar and 𝑆repul ((3.6) and (3.7), also taking into account (3.8), (3.9), (3.10), (3.11), (3.12), (3.13),
(3.14), (3.15), (3.16), (3.17), (3.18), (3.19), and (3.20)), which deal with attractive and repulsive interactions respec-
tively. Six types of polar interaction centres are considered: hydrogen bond donors (DON), metal ions (M+), positively
charged carbons (C+, as found at the centre of guanidinium, amidinium and imidazole groups), hydrogen bond ac-
ceptors with pronounced lone pair directionality (ACC_LP), acceptors with in-plane preference but limited lone-pair
directionality (ACC_PLANE), and all remaining acceptors (ACC). The ACC_LP type is used for carboxylate oxygens
and O sp2 atoms in RNA bases, with ACC_PLANE used for other O sp2 acceptors. This distinction between acceptor
types was not made in RiboDock, in which all acceptors were implicitly of type ACC.

𝑆polar =
∑︁

IC1-IC2

𝑓1(|∆𝑅12|) · ANGIC1 · ANGIC2 · 𝑓2(IC1) · 𝑓2(IC2) · 𝑓3(IC1) · 𝑓3(IC2) (3.6)

𝑆repul =
∑︁

IC1-IC2

𝑓1(∆𝑅12) · ANGIC1 · ANGIC2 · 𝑓2(IC1) · 𝑓2(IC2) · 𝑓3(IC1) · 𝑓3(IC2) (3.7)

𝑓1(∆𝑋) =

⎧⎪⎨⎪⎩
1 ∆𝑋 ≤ ∆𝑋min

1− Δ𝑋−Δ𝑋min

Δ𝑋max−Δ𝑋min
∆𝑋min < ∆𝑋 ≤ ∆𝑋max

0 ∆𝑋 > ∆𝑋max

(3.8)

𝑓2(𝑖) = 𝑠𝑔𝑛(𝑖)(1 + 0.5|𝑐𝑖|) (3.9)

𝑠𝑔𝑛(𝑖) =

⎧⎪⎨⎪⎩
−1 ACC,ACC_LP,ACC_PLANE
+0.5 C+
+1.0 DON,M+

(3.10)

𝑐𝑖 = formal charge on primary atom of interaction centre 𝑖 (3.11)

𝑓3(∆𝑋) =

{︃√︁
𝑁𝑖

25 macromolecular interaction centres
1 ligand interaction centres

(3.12)

𝑁𝑖 = number of non-hydrogen macromolecule atoms within
5 Å radius of primary atom of interaction centre 𝑖

(3.13)

Individual interaction scores are the product of simple scaling functions for geometric variables, formal charges and
local neighbour density. The scaling functions themselves, and the formal charge assignment method, are retained from
RiboDock. Metals are assigned a uniform formal charge of +1. C+ is considered to be a weak donor in this context
and scores are scaled by 50 % relative to conventional donors by the assignment of 𝑠𝑔𝑛(𝑖) = 0.5 in (3.9). Pseudo-
formal charges are no longer assigned to selected RNA base atoms. The geometric functions minimally include an
interaction distance term, with the majority also including angular terms dependent on the type of the interaction
centres. Geometric parameters and the angular functions are summarised in Appendix section (Table 3.19 and Table
3.20, respectively).

The most notable improvements to RiboDock are that attractive (hydrogen bond and metal) interactions with ACC_LP
and ACC_PLANE acceptors include terms for 𝜑 and 𝜃 (as defined in [ref 3]) to enforce the relevant lone pair directional-
ity. These replace the 𝛼ACC dependence, which is retained for the ACC acceptor type. No distinction between acceptor
types is made for attractive interactions with C+ carbons, or for repulsive interactions between acceptors. In these
circumstances all acceptors are treated as type ACC. Such C+-ACC interactions, which in RiboDock were described
by only a distance function, (𝑆posC-acc) now include angular functions around the carbon and acceptor groups. Repul-
sive interactions between donors, and between acceptors, also have an angular dependence. This allows a stronger
weight, and a longer distance range, to be used to penalise disallowed head-to-head interactions without forbidding
allowable contacts. One of the issues in RiboDock was that it was not possible to include neutral acceptors in the
acceptor-acceptor repulsion term with a simple distance function.

3.6. Scoring functions 59

RxDock Documentation, Release 0.1.0

Solvation potential

The desolvation potential in RxDock combines a weighted solvent-accessible surface area approach [WSAS2001] with
a rapid probabilistic approximation to the calculation of solvent-accessible surface areas [RASASA1988] based on
pairwise interatomic distances and radii ((3.14), taking into account (3.15), (3.16), (3.17), (3.18), (3.19), and (3.20)).

𝑆solv = (∆𝐺site,bound
WSAS −∆𝐺site0,unbound

WSAS) + (∆𝐺ligand,bound
WSAS −∆𝐺ligand0,unbound

WSAS) (3.14)

𝑟s = 0.6Å (3.15)

𝑝𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.8875 1-2 intramolecular connections
0.3516 1-3 intramolecular connections
0.3156 1-4 intramolecular connections and above
0.3156 intermolecular interactions

(3.16)

𝑆𝑖 = 4𝜋(𝑟𝑖 + 𝑟𝑠)
2 (3.17)

𝑏𝑖𝑗 = 𝜋(𝑟𝑖 + 𝑟𝑠)(𝑟𝑗 + 𝑟𝑖 + 2𝑟𝑠 − 𝑑)
(︁
1− 𝑟𝑗 − 𝑟𝑖

𝑑

)︁
(3.18)

𝐴𝑖 = 𝑆𝑖

∏︁
𝑗

1− 𝑝𝑖𝑝𝑖𝑗𝑏𝑖𝑗
𝑆𝑖

(3.19)

∆𝐺WSAS =

𝑛𝑖∑︁
𝑖=1

𝑤𝑖𝐴𝑖 (3.20)

The calculation is fast enough therefore to be used in docking. We have redefined the solvation atom types compared
to the original work [WSAS2001] and recalibrated the weights against the same training set of experimental solvation
free energies in water (395 molecules). The total number of atom types (50, including 6 specifically for ionic groups
and metals) is slightly lower than in original work (54). Our atom types reflect the fact that RxDock uses implicit non-
polar hydrogens. The majority of types are a combination of hybridisation state and the number of implicit or explicit
hydrogens. All solvation parameters are listed in Appendix section (Table 3.21).

𝑆solv is calculated as the change in solvation energy of the ligand and the docking site upon binding of the ligand.
The reference energies are taken from the initial conformations of the ligand and site (as read from file) and not from
the current pose under evaluation. This is done to take into account any changes to intramolecular solvation energy.
Strictly speaking the intramolecular components should be reported separately under 𝑆intra and 𝑆site but this is not done
for reasons of computational efficiency.

Dihedral potential

Dihedral energies are calculated using Tripos 5.2 dihedral parameters for all ligand and site rotatable bonds. Corrections
are made to account for the missing contributions from the implicit non-polar hydrogens.

3.6.2 Intermolecular scoring functions under evaluation

Training sets

We constructed a combined set of protein-ligand and RNA-ligand complexes for training of RxDock. Molecular data
files for the protein-ligand complexes were extracted from the downloaded CCDC/Astex cleanlist [ASTEX2007] and
used without substantive modification. The only change was to convert ligand MOL2 files to MDL SD format using
Corina [CORINA1990], leaving the coordinates and protonation states intact.

Protein MOL2 files were read directly. The ten RNA-ligand NMR structures from the RiboDock validation set were
supplemented with five RNA-ligand crystal structures (1f1t, 1f27, 1j7t, 1lc4, 1mwl) prepared in a similar way. All 15
RNA-ligand structures have measured binding affinities.

60 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

58 complexes (43 protein-ligand and 15 RNA-ligand) were selected for the initial fitting of component scoring function
weights. Protein-ligand structures were chosen (of any X-ray resolution) that had readily available experimental binding
affinities [PDBbind2004]. 102 complexes were used for the main validation of native docking accuracy for different
scoring function designs, consisting of 87 of the 92 entries in the high resolution (R < 2 Å) clean-list (covalently bound
ligands removed – 1aec, 1b59, 1tpp, 1vgc, 4est), and the 15 RNA-ligand complexes.

Scoring functions design

Component weights (𝑊) for each term in the intermolecular scoring function (𝑆inter) were obtained by least squares
regression of the component scores to ∆𝐺bind values for the binding affinity training set described above (58 entries).
Each ligand was subjected first to simplex minimisation in the docking site, starting from the crystallographic pose, to
relieve any minor non-bonded clashes with the site. The scoring function used for minimisation was initialised with
reasonable manually assigned weights. If the fitted weights deviated significantly from the initial weights the procedure
was repeated until convergence. Certain weights (𝑊repul, 𝑊rot, 𝑊const) were constrained to have positive values to avoid
non-physical, artefactual models. Note that the presence of 𝑊rot and 𝑊const in 𝑆inter improves the quality of the fit to
the binding affinities but does not impact on native ligand docking accuracy.

Ten intermolecular scoring functions were derived with various combinations of terms (Table 3.1). SF0 is a baseline
scoring function that has the van der Waals potential only. SF1 adds a simplified polar potential, without f2 (formal
charge) and f3 (neighbour density) scaling functions, and with a single acceptor type (ACC) that lacks lone-pair direc-
tionality. SF2 has the full polar potential (f2 and f3 scaling functions, ACC, ACC_LP and ACC_PLANE acceptor types)
and adds the repulsive polar potential. SF3 has the same functional form as SF2 but with empirical weights in regular
use at RiboTargets. SF4 replaces the repulsive polar potential with the WSAS desolvation potential described above.
SF5 has the same functional form as SF4 but with empirical weights in regular use at RiboTargets. SF6 combines the
repulsive polar and desolvation potentials. SF7 has the same functional form as SF2 and SF3 but with weights for 𝑊vdW
and 𝑊polar taken from SF5. SF8 and SF9 add the crude aromatic term from RiboDock [RiboDock2004] to SF3 and SF5
respectively. The 𝑆intra functional form and weights were held constant, and equivalent to SF3, to avoid any differences
in ligand conformational energies affecting the docking results. As the 𝑆site scores are calculated simultaneously with
𝑆inter (for computational reasons) the 𝑆site functional form and weights vary in line with 𝑆inter. There is surprisingly
little variation in correlation coefficient (R) and root mean square error (RMSE) in predicted binding energy over the
ten scoring functions (Table 3.1). The best results are obtained with SF4 (R = 0.67, RMSE = 9.6 kJ/mol).

Table 3.1: Intermolecular scoring function weights under evaluation (a
= constrained to be > zero; b = fixed values; c = correlation coefficient
(R), and root mean squared error (RMSE) between 𝑆inter and ∆𝐺bind, for
minimised experimental ligand poses, over binding affinity validation set
(58 entries)).

SF 𝑊vdW 𝑊polar 𝑊solv 𝑊repul
a 𝑊arom 𝑊rot

a 𝑊const
a Rc RMSEc

0 1.4 - - - - 0 0 0.62 10.9
1 1.126 2.36 - - - 0.217 0 0.64 10.2
2 1.192 2.087 - 2.984 - 0 0 0.63 10.4
3 1.000b 3.400b - 5.000b - 0 0 0.59 10.9
4 1.317 3.56 0.449 - - 0 4. 0.67 9.6
5 1.500b 5.000b 0.500b - - 0.568 4.782 0.62 10.7
6 1.314 4.447 0.500b 5.000b - 0 0 0.62 10.4
7 1.500b 5.000b - 5.000b - 0.986 12.046 0.55 12.9
8 1.000b 3.400b - 5.000b -1.6b 0 0 0.53 11.8
9 1.500b 5.000b 0.500b - -1.6b 0.647 5.056 0.58 11.5

3.6. Scoring functions 61

RxDock Documentation, Release 0.1.0

Scoring functions validation

The ability of the ten intermolecular scoring functions (SF0 to SF9) to reproduce known ligand binding modes was
determined on the combined test set of 102 protein-ligand and RNA-ligand complexes. The intra-ligand scoring func-
tion (𝑆intra) was kept constant, with component weights equivalent to SF3, and a dihedral weight of 0.5. Terminal OH
and NH3 groups on the receptor in the vicinity of the docking site were fully flexible during docking. Ligand pose
populations of size 𝑁pop = 300 were collected for each complex and intermolecular scoring function combination.
The population size was increased to 𝑁pop = 1000 for two of the most promising scoring functions (SF3 and SF5).

Protein-ligand docking accuracy is remarkably insensitive to scoring function changes. Almost half of the ligand bind-
ing modes can be reproduced with a vdW potential only (SF0). The addition of a simplified polar potential (SF1)
increases the accuracy to over 70 % of protein-ligand test cases predicted to within 2 Å RMSD. The success rate
increases further to 78 % with SF3, which has the full attractive and repulsive polar potentials, and empirically ad-
justed weights relative to SF2. Subsequent changes to the component terms and weights, including the addition of the
desolvation potential, have little or no impact on the protein-ligand RMSD metric.

The nucleic acid set shows a much greater sensitivity to scoring function changes. This can in part be explained by the
smaller sample size that amplifies the percentage changes in the RMSD metric, but nevertheless the trends are clear.
There is a gradual increase in docking accuracy from SF0 (37 %) to SF3 (52 %), but absolute performance is much
lower than for the protein-ligand test set. This level of docking accuracy for nucleic acid-ligand complexes is broadly
consistent with the original RiboDock scoring function, despite the fact that the original steric term (LIPO) has been
replaced by a true vdW potential. The introduction of the desolvation potential in place of the empirical repulsive polar
potential (in SF4 and SF5) results in a substantial improvement in accuracy, to around 70 % of test cases within 2 Å
RMSD. Subsequent changes (SF6 to SF9) degrade the accuracy. The lower performance of SF7, which has the higher
weights for the VDW and POLAR terms taken from SF5 but lacks the desolvation potential, demonstrates that it is
the desolvation term itself that is having the beneficial effect, and not merely the reweighting of the other terms. The
inclusion of the geometric aromatic term in SF8 and SF9 has a detrimental impact on the performance of SF3 and SF5
respectively.

Overall, SF5 achieves optimum performance across proteins and nucleic acids (76.7 % within 2 Å RMSD). SF3 (no
desolvation potential) and SF5 (with desolvation potential) were selected as the best intermolecular scoring functions.
Finally, these two scoring functions, SF3 and SF5, were the ones implemented in RxDock with the names of dock.prm
and dock_solv.prm, respectively.

Note: In virtual screening campaigns, or in experiments where score of different ligands is compared, the best scoring
poses for each molecule (as defined by the lowest 𝑆total within the sample) are sorted and ranked by 𝑆inter. In other
words, the contributions to 𝑆total from 𝑆intra, 𝑆site and 𝑆restraint are ignored when comparing poses between different
ligands against the same target. The rationale for this is that, in particular, the ligand intramolecular scores are not on
an absolute scale and can differ markedly between different ligands.

3.6.3 Code implementation

Scoring functions for docking are constructed at run-time (by RbtSFFactory class) from scoring function definition
files (RxDock .prm format). The default location for scoring function definition files is $RBT_ROOT/data/sf/.

The total score is an aggregate of intermolecular ligand-receptor and ligand-solvent interactions (branch SCORE.
INTER), intra-ligand interactions (branch SCORE.INTRA), intra-receptor, intra-solvent and receptor-solvent interactions
(branch SCORE.SYSTEM), and external restraint penalties (branch SCORE.RESTR).

The SCORE.INTER, SCORE.INTRA and SCORE.SYSTEM branches consist of weighted sums of interaction terms as
shown below. Note that not all terms appear in all branches. See the rDock draft paper [rDock2014] for more details
on the implementation of these terms.

62 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.2: Scoring function terms and C++ implementation classes.

Term Description INTER INTRA SYSTEM

VDW van der Waals RbtVdWIdxSF RbtVdwIntraSF RbtVdwIdxSF
VDW van der Waals (grid based) RbtVdwGridSF N/A N/A
PO-
LAR

Attractive polar RbtPolarIdxSF RbtPolarIntraSF RbtPolarIdxSF

RE-
PUL

Repulsive polar RbtPolarIdxSF RbtPolarIntraSF RbtPolarIdxSF

SOLV Desolvation RbtSAIdxSF RbtSAIdxSF RbtSAIdxSF
CONST Translation/rotational binding entropy

penalty
RbtConstSF N/A RbtConstSF

ROT Torsional binding entropy penalty RbtRotSF N/A N/A

Two intermolecular scoring functions (SCORE.INTER branch) have been validated. These are known informally as the
standard scoring function and the desolvation scoring function (referred to as SF3 and SF5 respectively in the rDock
draft paper [rDock2014]). The standard intermolecular scoring function consists of VDW, POLAR and REPUL terms.
In the desolvation scoring function, the REPUL term is replaced by a more finely parameterised desolvation potential
(SOLV term) based on a weighted solvent-accessible surface (WSAS) area model. The ligand intramolecular scoring
function (SCORE.INTRA branch) remains constant in both cases, and has the same terms and weights as the standard
intermolecular scoring function.

Table 3.3: Scoring function data files.

File Description
RbtInterIdxSF.prm Intermolecular scoring function definition (standard scoring function, SF3)
RbtInterGridSF.prm As above, but vdW term uses a precalculated grid
RbtSolvIdxSF.prm Intermolecular scoring function definition (desolvation scoring function, SF5)
calcgrid_vdw1.prm vdW term only (ECUT = 1), for calculating vdW grid (used by rbcalcgrid)
calcgrid_vdw5.prm vdW term only (ECUT = 5), for calculating vdW grid (used by rbcalcgrid)
Tripos52_vdw.prm vdW term parameter file
Tripos52_dihedrals.prm Dihedral term parameter file
solvation_asp.prm Desolvation term parameter file

Note: External restraint penalty terms are defined by the user in the system definition .prm file. Originally, rDock
did not support flexible receptor dihedrals or explicit structural waters, and the overall scoring function consisted
of just the SCORE.INTER and SCORE.INTRA branches. At that time, the intermolecular scoring function definition
file (e.g. RbtInterIdxSF.prm) represented precisely the SCORE.INTER terms, and the intramolecular definition file
(RbtIntraSF.prm) represented precisely the SCORE.INTRA terms. With the introduction of receptor flexibility and
explicit structural waters (and hence the need for the SCORE.SYSTEM branch), the situation is slightly more complex.
For implementation reasons, many of the terms reported under SCORE.SYSTEM (with the exception of the dihedral
term) are calculated simultaneously with the terms reported under SCORE.INTER, and hence their parameterisation is
defined implicitly in the intermolecular scoring function definition file. In contrast, the ligand intramolecular scoring
function terms can be controlled independently.

3.6. Scoring functions 63

RxDock Documentation, Release 0.1.0

3.6.4 References

3.7 Docking protocol

3.7.1 Protocol summary

Pose generation

RxDock uses a combination of stochastic and deterministic search techniques to generate low energy ligand poses. The
standard docking protocol to generate a single ligand pose uses 3 stages of genetic algorithm search (GA1, GA2, GA3),
followed by low temperature Monte Carlo (MC) and simplex minimisation (MIN) stages.

Several scoring function parameters are varied between the stages to promote efficient sampling. The ECUT parameter
of the 𝑆inter vdW potential (defining the hardness of the intermolecular close range potential) is increased from 1 in the
first GA stage (GA1) to a maximum of 120 in the MC and MIN stages, with intermediate values of 5 in GA2 and 25
in GA3. The functional form of the 𝑆inter vdW potential is switched from a 4-8 potential in GA1 and GA2 to a 6-12
potential in GA3, MC and MIN.

In a similar fashion, the overall weight of the 𝑆intra dihedral potential is ramped up from an initial value of 0.1 in GA1 to
a final value of 0.5 in the MC and MIN stages, with intermediate values of 0.2 in GA2 and 0.3 in GA3. In contrast, the
𝑆intra vdW parameters (as used for the ligand intramolecular potential) remain fixed at the final, hard values throughout
the calculation (ECUT = 120, 6-12 potential).

Overall, we found this combination of parameter changes allows for efficient sampling of the very poor starting poses,
whilst minimising the likelihood that poor ligand internal conformations are artificially favoured and trapped early in
the search, and ensures that physically realistic potentials are used for final optimisation and analysis.

Genetic algorithm

The GA chromosome consists of the ligand centre of mass (com), the ligand orientation, as represented by the quater-
nion (q) required to rotate the ligand principal axes from the Cartesian reference axes, the ligand rotatable dihedral
angles, and the receptor rotatable dihedral angles. The ligand centre of mass and orientation descriptors, although
represented by multiple floating point values (com.x, com.y, com.z, and q.s, q.x, q.y, q.z respectively), are operated on
as intact entities by the GA mutation and crossover operators.

For so-called free docking, in which no external restraints other than the cavity penalty are imposed, the initial pop-
ulation is generated such that the ligand centre of mass is constrained to lie on a randomly selected grid point within
the defined docking volume, and the ligand orientation and all dihedral angles are randomised completely. Mutations
to the ligand centre of mass are by a random distance along a randomly oriented unit vector. Mutations to the ligand
orientation are performed by rotating the ligand principal axes by a random angle around a randomly oriented unit
vector. Mutations to the ligand and receptor dihedral angles are by a random angle. All mutation distances and angles
are randomly selected from rectangular distributions of defined width.

A generation is considered to have passed when the number of new individuals created is equal to the population size.
Instead of having a fixed number of generations, the GA is allowed to continue until the population converges. The
population is considered converged when the score of the best scoring pose fails to improve by more than 0.1 over the
last three generations. This allows early termination of poorly performing runs for which the initial population is not
able to generate a good solution.

During initial testing the impact of a wide variety of GA parameters (Table 3.4) were explored on a small, representative
set of protein-ligand complexes (3ptb, 1rbp, 1stp, 3dfr). We measured the frequency that the algorithm was able to find
the experimental conformation, and the average run time. Optimum results were obtained with a steady state GA,
roulette wheel selection, a single population of size (100× (number of rotatable bonds)), a crossover:mutation ratio of
40:60, and mutation distribution widths of ligand translation 2 Å, ligand rotation of 30 degrees and dihedral angle of
30 degrees. These parameters have been found to be generally robust across a wide variety of systems.

64 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.4: Summary of GA parameter space explored, and final values

Parameter Values Explored Final Values
Number of populations 1, 2, 3, 4, 5 1
Selection operator Roulette wheel, Rank Roulette wheel
Mutation Rectangular Cauchy Rectangular
GA Generational, Steady state Steady state
Elitism Yes, No No
No of individuals modified in each
generation

All values from 1 to population size 0.5 * population size

Population size 50, 75, 100, 125, 150, 200, 400, 800 * number of
rotatable bonds

100 * number of rotat-
able bonds

Probability of choosing Crossover
vs. Mutation

0.0, 0.05, 0.1 . . . 0.9, 0.95, 1.0 0.4

Torsion step 3, 12, 21, 30 degrees 30 degrees
Rotational step 3, 12, 21, 30 degrees 30 degrees
Translation step 0.1, 0.8, 1.4, 2.0 Å 2.0 Å

Monte Carlo

The method and parameters for low temperature Monte Carlo are similar to those described for phase 4 of the RiboDock
simulated annealing search protocol. The overall number of trials is scaled according to the number of rotatable bonds in
the ligand, from a minimum of 500 (𝑁rot = 0) to a maximum of 2000 (𝑁rot = 15). Maximum step sizes are: translation
0.1 Å, ligand rotation of 10 degrees and dihedral angle of 10 degrees. Step sizes are halved if the Metropolis acceptance
rate falls below 0.25.

Simplex

The Nelder-Mead’s simplex minimisation routine operates on the same chromosome representation as the GA, with the
exception that the composite descriptors (centre of mass and orientation) are decomposed into their constituent floating
point values.

3.7.2 Code implementation

Docking protocols are constructed at run-time (by RbtTransformFactory class) from docking protocol definition files
(RxDock .prm format). The default location for docking protocol files is $RBT_ROOT/data/scripts/. The docking
protocol definition file defines the sequence of search algorithms that constitute a single docking run for a single ligand
record. Each search algorithm component operates either on a single chromosome representing the system degrees of
freedom, or on a population of such chromosomes. The chromosome is constructed (by RbtChromFactory class) as
an aggregate of individual chromosome elements for the receptor, ligand and explicit solvent degrees of freedom, as
defined by the flexibility parameters in the system definition file.

Table 3.5: Chromosome elements

Element Defined by Class Length
Position Centre of mass RbtChromPositionElement 3
Orientation Euler angles for principal axes RbtChromPositionElement 3
Dihedral Dihedral angle for rotatable bond RbtChromDihedralElement 1 per bond
Occupancy Explicit water occupancy state RbtChromOccupancylElement 1 per water

3.7. Docking protocol 65

RxDock Documentation, Release 0.1.0

3.7.3 Standard RxDock docking protocol (dock.prm)

As stated above in this section, the standard RxDock docking protocol consists of three phases of a genetic algorithm
search, followed by low-temperature Monte Carlo and simplex minimisation.

Table 3.6: Search algorithm components and C++ implementation
classes

Component Class Operates on
Randomise population RbtRandPopTransform Chromosome population
Genetic algorithm search RbtGATransform Chromosome population
Monte Carlo simulated annealing RbtSimAnnTransform Single chromosome
Simplex minimisation RbtSimplexTransform Single chromosome
Null operation RbtNullTransform N/A

Table 3.7: Docking protocol data files

File Description
score.prm Calculates score only for initial conformation (standard scoring function)
scole_solv.prm As above, but uses desolvation scoring function
minimise.prm Simplex minimisation of initial conformation (standard scoring function)
minimise_solv.prm As above, but uses desolvation scoring function
dock.prm Full docking search (standard scoring function)
dock_solv.prm As above, but uses desolvation scoring function
dock_grid.prm Full docking search (standard scoring function, grid-based vdW term)
dock_solv_grid.prm Full docking search (desolvation scoring function, grid-based vdW term)

By way of example, the dock.prm script is documented in detail. The other scripts are very similar.

SECTION SCORE
INTER RbtInterIdxSF.prm
INTRA RbtIntraSF.prm
SYSTEM RbtTargetSF.prm

END_SECTION

Scoring Function The scoring function definition is referenced within the docking protocol definition file itself, in the
SCORE section. This section contains entries for the INTER, INTRA and SYSTEM scoring function definition files.

SECTION SETSLOPE_1
TRANSFORM RbtNullTransform
Dock with a high penalty for leaving the cavity
WEIGHT@SCORE.RESTR.CAVITY 5.0
Gradually ramp up dihedral weight from 0.1-->0.5
WEIGHT@SCORE.INTRA.DIHEDRAL 0.1
Gradually ramp up energy cut off for switching to quadratic
ECUT@SCORE.INTER.VDW 1.0
Start docking with a 4-8 vdW potential
USE 4_8@SCORE.INTER.VDW TRUE
Broader angular dependence
DA1MAX@SCORE.INTER.POLAR 180.0
Broader angular dependence
DA2MAX@SCORE.INTER.POLAR 180.0

(continues on next page)

66 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

Broader distance range
DR12MAX@SCORE.INTER.POLAR 1.5

END_SECTION

Genetic algorithm All sections that contain the TRANSFORM parameter are interpreted as a search algorithm com-
ponent. The value of the TRANSFORM parameter is the C++ implementation class name for that transform. An
RbtNullTransform can be used to send messages to the scoring function to modify key scoring function parame-
ters in order to increase search efficiency. All parameter names that contain the @ symbol are interpreted as scoring
function messages, where the string before the @ is the scoring function parameter name, the string after the @ is the
scoring function term, and the parameter value is the new value for the scoring function parameter. Messages are sent
blind, with no success feedback, as the docking protocol has no knowledge of the composition of the scoring function
terms.

Here, we start the docking with a soft 4-8 vdW potential, a reduced dihedral potential, and extended polar ranges (dis-
tances and angles) for the intermolecular polar potential. These changes are all designed to aid sampling efficiency by
not overpenalising bad contacts in the initial, randomised population, and by encouraging the formation of intermolec-
ular hydrogen bonds.

SECTION RANDOM_POP
TRANSFORM RbtRandPopTransform
POP_SIZE 50
SCALE_CHROM_LENGTH TRUE

END_SECTION

Creates an initial, randomised chromosome population. If SCALE_CHROM_LENGTH is false, the population is of fixed
size, defined by POP_SIZE. If SCALE_CHROM_LENGTH is true, the population is proportional to the overall chromosome
length, defined by POP_SIZE multiplied by the chromosome length.

SECTION GA_SLOPE1
TRANSFORM RbtGATransform
PCROSSOVER 0.4 # Prob. of crossover
XOVERMUT TRUE # Cauchy mutation after each crossover
CMUTATE FALSE # True = Cauchy; False = Rectang. for regular mutations
STEP_SIZE 1.0 # Max relative mutation

END_SECTION

First round of GA.

SECTION SETSLOPE_3
TRANSFORM RbtNullTransform
WEIGHT@SCORE.INTRA.DIHEDRAL 0.2
ECUT@SCORE.INTER.VDW 5.0
DA1MAX@SCORE.INTER.POLAR 140.0
DA2MAX@SCORE.INTER.POLAR 140.0
DR12MAX@SCORE.INTER.POLAR 1.2

END_SECTION

Increases the ligand dihedral weight, increases the short-range intermolecular vdW hardness (ECUT), and decreases
the range of the intermolecular polar distances and angles.

SECTION GA_SLOPE3
TRANSFORM RbtGATransform
PCROSSOVER 0.4 # Prob. of crossover

(continues on next page)

3.7. Docking protocol 67

RxDock Documentation, Release 0.1.0

(continued from previous page)

XOVERMUT TRUE # Cauchy mutation after each crossover
CMUTATE FALSE # True = Cauchy ; False = Rectang. for regular mutations
STEP_SIZE 1.0 # Max relative mutation

END_SECTION

Second round of GA with revised scoring function parameters.

SECTION SETSLOPE_5
TRANSFORM RbtNullTransform
WEIGHT@SCORE.INTRA.DIHEDRAL 0.3
ECUT@SCORE.INTER.VDW 25.0
Now switch to a convential 6-12 for final GA, MC, minimisation
USE 4_8@SCORE.INTER.VDW FALSE
DA1MAX@SCORE.INTER.POLAR 120.0
DA2MAX@SCORE.INTER.POLAR 120.0
DR12MAX@SCORE.INTER.POLAR 0.9

END_SECTION

Further increases the ligand dihedral weight, further increases the short-range intermolecular vdW hardness (ECUT),
and further decreases the range of the intermolecular polar distances and angles. Also switches from softer 4-8 vdW
potential to a harder 6-12 potential for final round of GA, MC and minimisation.

SECTION GA_SLOPE5
TRANSFORM RbtGATransform
PCROSSOVER 0.4 # Prob. of crossover
XOVERMUT TRUE # Cauchy mutation after each crossover
CMUTATE FALSE # True = Cauchy ; False = Rectang. for regular mutations
STEP_SIZE 1.0 # Max relative mutation

END_SECTION

Final round of GA with revised scoring function parameters.

SECTION SETSLOPE_10
TRANSFORM RbtNullTransform
WEIGHT@SCORE.INTRA.DIHEDRAL 0.5 # Final dihedral weight matches SF file
ECUT@SCORE.INTER.VDW 120.0 # Final ECUT matches SF file
DA1MAX@SCORE.INTER.POLAR 80.0
DA2MAX@SCORE.INTER.POLAR 100.0
DR12MAX@SCORE.INTER.POLAR 0.6

END_SECTION

Resets all the modified scoring function parameters to their final values, corresponding to the values in the scoring
function definition files. It is important that the final scoring function optimised by the docking search can be compared
directly with the score-only and minimisation-only protocols, in which the scoring function parameters are not modified.

SECTION MC_10K
TRANSFORM RbtSimAnnTransform
START_T 10.0
FINAL_T 10.0
NUM_BLOCKS 5
STEP_SIZE 0.1
MIN_ACC_RATE 0.25
PARTITION_DIST 8.0

(continues on next page)

68 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

(continued from previous page)

PARTITION_FREQ 50
HISTORY_FREQ 0

END_SECTION

Monte Carlo Low temperature Monte Carlo sampling, starting from fittest chromosome from final round of GA.

SECTION SIMPLEX
TRANSFORM RbtSimplexTransform
MAX_CALLS 200
NCYCLES 20
STOPPING_STEP_LENGTH 10e-4
PARTITION_DIST 8.0
STEP_SIZE 1.0
CONVERGENCE 0.001

END_SECTION

Minimisation Simplex minimisation, starting from fittest chromosome from low temperature Monte Carlo sampling.

SECTION FINAL
TRANSFORM RbtNullTransform
WEIGHT@SCORE.RESTR.CAVITY 1.0 # revert to standard cavity penalty

END_SECTION

Finally, we reset the cavity restraint penalty to 1. The penalty has been held at a value of 5 throughout the search, to
strongly discourage the ligand from leaving the docking site.

3.8 System definition file

Although known previously as the receptor .prm file, the system definition file has evolved to contain much more than
the receptor information. The system definition file is used to define:

• Receptor input files and flexibility parameters (the section called Receptor definition)

• Explicit solvent input file and flexibility parameters (the section called Solvent definition)

• Ligand flexibility parameters (the section called Ligand definition).

• External restraint terms to be added to the total scoring function (e.g. cavity restraint, pharmacophoric restraint)

3.8.1 Receptor definition

The receptor can be loaded from a single MOL2 file, or from a combination of Charmm PSF and CRD files. In the
former case the MOL2 file provides the topology and reference coordinates simultaneously, whereas in the latter case
the topology is loaded from the PSF file and the reference coordinates from the CRD file. For historical compatibility
reasons, receptor definition parameters are all defined in the top-level namespace and should not be placed between
SECTION / END_SECTION pairs.

Caution: If MOL2 and PSF/CRD parameters are defined together, the MOL2 parameters take precedence and are
used to load the receptor model.

3.8. System definition file 69

RxDock Documentation, Release 0.1.0

Table 3.8: Receptor definition parameters

Pa-
ram-
eter

Description Type Default Range of
values

Parameters specific to loading receptor in MOL2 file format
RECEPTOR_FILEName of receptor MOL2 file Filename string No de-

fault
value

Valid
MOL2
filename

Parameters specific to loading receptor in Charmm PSF/CRD file format
RECEPTOR_TOPOL_FILEName of receptor Charmm PSF file Filename string No de-

fault
value

Valid
Charmm
PSF file-
name

RECEPTOR_COORD_FILEName of receptor Charmm CRD file Filename string No de-
fault
value

Valid
Charmm
CRD
filename

RECEPTOR_MASSES_FILEName of RxDock-annotated Charmm masses file Filename string No de-
fault
value

masses.
rtf,
top_all2_prot_na.
inp

General receptor parameters, applicable to either file format
RECEPTOR_SEGMENT_NAMEList of molecular segment names to read from either MOL2

or PSF/CRD file. If this parameter is defined, then any seg-
ment/chains not listed are not loaded. This provides a conve-
nient way to remove cofactors, counterions and solvent with-
out modifying the original file.

Comma sep-
arated list of
segment name
strings (with-
out any spaces)

Empty
(i.e. all
seg-
ments
read
from
file)

Comma
separated
list of
segment
name
strings

RECEPTOR_FLEXDefines terminal OH and NH3+ groups withing this distance
of docking volume as flexible.

float
(Angstroms)

Unde-
fined
(rigid re-
ceptor)

>0.0 (3.0
is a rea-
sonable
value)

Advanced parameters (should not need to be changed by the user)
RECEPTOR_ALL_HDisable the removal of explicit non-polar hydrogens from the

receptor model. Not recommended
boolean FALSE TRUE or

FALSE
DIHEDRAL_STEPMaximum mutation step size for receptor dihedral degrees of

freedom.
float (degrees) 30.0 >0.0

3.8.2 Ligand definition

Ligand definition parameters need only be defined if you wish to introduce tethering of some or all of the ligand
degrees of freedom. If you are running conventional free docking then this section is not required. All ligand definition
parameters should be defined in SECTION LIGAND. Note that the ligand input SD file continues to be specified directly
on the rbdock command-line and not in the system definition file.

70 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.9: Ligand definition parameters

Param-
eter

Description Type De-
fault

Range of
values

Main user parameters
TRANS_MODESampling mode for ligand translational degrees of freedom enumerated

string literal
FREE FIXED,

TETHERED,
FREE

ROT_MODE Sampling mode for ligand whole-body rotational degrees of
freedom

enumerated
string literal

FREE FIXED,
TETHERED,
FREE

DIHEDRAL_MODESampling mode for ligand internal dihedral degrees of freedom enumerated
string literal

FREE FIXED,
TETHERED,
FREE

MAX_TRANS(for TRANS_MODE = TETHERED only) Maximum deviation al-
lowed from reference centre of mass

float
(Angstroms)

1.0 >0.0

MAX_ROT (for ROT_MODE = TETHERED only) Maximum deviation al-
lowed from orientation for reference principle axes

float (de-
grees)

30.0 >0.0–180.0

MAX_DIHEDRAL(for DIHEDRAL_MODE = TETHERED only) Maximum deviation
allowed from reference dihedral angles for any rotatable bond

float (de-
grees)

30.0 >0.0–180.0

Advanced parameters (should not need to be changed by the user)
TRANS_STEPMaximum mutation step size for ligand translational degrees of

freedom
float
(Angstroms)

2.0 >0.0

ROT_STEP Maximum mutation step size for ligand whole-body rotational
degrees of freedom

float (de-
grees)

30.0 >0.0

DIHEDRAL_STEPMaxium mutation step size for ligand internal dihedral degrees
of freedom

float (de-
grees)

30.0 >0.0

3.8.3 Solvent definition

Solvent definition parameters need only be defined if you wish to introduce explicit structural waters into the docking
calculation, otherwise this section is not required. All solvent definition parameters should be defined in SECTION
SOLVENT.

3.8. System definition file 71

RxDock Documentation, Release 0.1.0

Table 3.10: Solvent definition parameters

Pa-
ram-
eter

Description Type Default Range
of val-
ues

Main user parameters
FILE Name of explicit solvent PDB file File

name
string

No de-
fault value
(manda-
tory
parameter)

Valid
PDB
file-
name

TRANS_MODESampling mode for solvent translational degrees of freedom. If defined
here, the value overrides the per-solvent translational sampling modes
defined in the solvent PDB file

enu-
mer-
ated
string
literal

FREE FIXED,
TETHERED,
FREE

ROT_MODESampling mode for solvent whole-body rotational degrees of freedom.
If defined here, the value overrides the per-solvent rotational sampling
modes defined in the solvent PDB file

enu-
mer-
ated
string
literal

FREE FIXED,
TETHERED,
FREE

MAX_TRANS(for TRANS_MODE = TETHERED waters only) Maximum deviation al-
lowed from reference water oxygen positions. The same value is applied
to all waters with TRANS_MODE = TETHERED; it is no possible currently
to define per-solvent MAX_TRANS values

float
(Angstroms)

1.0 >0.0

MAX_ROT(for ROT_MODE = TETHERED waters only) Maximum deviation allowed
from orientation of reference principal axes. The same value is applied
to all waters with ROT_MODE = TETHERED; it is no possible currently to
define per-solvent MAX_ROT values

float
(de-
grees)

30.0 >0.0–180.0

OCCUPANCYControls occupancy state sampling for all explicit solvent. If defined
here, the values overrides the per-solvent occupancy states defined in the
solvent PDB file

float 1.0 0.0–1.0

Advanced parameters (should not need to be changed by the user)
TRANS_STEPMaximum mutation step size for solvent translational degrees of freedom float

(Angstroms)
2.0 >0.0

ROT_STEPMaximum mutation step size for solvent wholebody rotational degrees
of freedom

float
(de-
grees)

30.0 >0.0

OCCUPANCY_STEPMaximum mutation step size for solvent occupancy state degrees of free-
dom

float
(de-
grees)

1.0 0.0–1.0

Solvent occupancy state sampling OCCUPANCY = 0 permanently disables all solvent; OCCUPANCY = 1.0 perma-
nently enables all solvent; OCCUPANCY between 0 and 1 activates variable occupancy state sampling, where the value
represents the initial probability that the solvent molecule is enabled. For example, OCCUPANCY = 0.5 means that the
solvent is enabled in 50 % of the initial GA population. However, the probability that the solvent is actually enabled
in the final docking solution will depend on the particular ligand, the scoring function terms, and on the penalty for
solvent binding. The occupancy state chromosome value is managed as a continuous variable between 0.0 and 1.0,
with a nominal mutation step size of 1.0. Chromosome values lower than the occupancy threshold (defined as 1.0 -
OCCUPANCY) result in the solvent being disabled; values higher than the threshold result in the solvent being enabled.

72 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

3.8.4 Cavity mapping

The cavity mapping section is mandatory. You should choose one of the mapping algorithms shown below. All mapping
parameters should be defined in SECTION MAPPER.

Table 3.11: Two sphere site mapping parameters

Param-
eter

Description Type Default Range of values

Main user parameters
SITE_MAPPERMapping algorithm specifier string literal RbtSphereSiteMapperfixed
CENTER (x,y,z) center of cavity mapping re-

gion
Bracketed cartesian
coordinate string
(x,y,z)

None None

RADIUS Radius of cavity mapping region float (Angstroms) 10.0 >0.0 (10.0–20.0 sug-
gested range)

SMALL_SPHERERadius of small probe float (Angstroms) 1.5 >0.0 (1.0–2.0 sug-
gested range)

LARGE_SPHERERadius of large probe float (Angstroms) 4.0 >SMALL_SPHERE
(3.5–6.0 suggested
range)

MAX_CAVITIESMaximum number of cavities to ac-
cept (in descending order of size)

integer 99 >0

Advanced parameters (less frequently changed by the user)
VOL_INCR Receptor atom radius increment for

excluded volume
float (Angstroms) 0.0 >=0.0

GRID_STEPGrid resolution for mapping float (Angstroms) 0.5 >0.0 (0.3–0.8 sug-
gested range)

MIN_VOLUMEMinimum cavity volume to accept
(in Å3, not grid points)

float (Angstroms3) 100 >0 (100–300 sug-
gested range)

3.8. System definition file 73

RxDock Documentation, Release 0.1.0

Table 3.12: Reference ligand site mapping parameters

Param-
eter

Description Type Default Range of values

Main user parameters
SITE_MAPPERMapping algorithm specifier string

literal
RbtLigandSiteMapperfixed

REF_MOL Reference ligand SD file name string ref.sd None
RADIUS Radius of cavity mapping region float

(Angstroms)
10.0 >0.0 (10.0–20.0 suggested

range)
SMALL_SPHERERadius of small probe float

(Angstroms)
1.5 >0.0 (1.0–2.0 suggested

range)
LARGE_SPHERERadius of large probe float

(Angstroms)
4.0 >SMALL_SPHERE (3.5–6.0

suggested range)
MAX_CAVITIESMaximum number of cavities to accept

(in descending order of size)
integer 99 >0

Advanced parameters (less frequently changed by the user)
VOL_INCR Receptor atom radius increment for ex-

cluded volume
float
(Angstroms)

0.0 >=0.0

GRID_STEP Grid resolution for mapping float
(Angstroms)

0.5 >0.0 (0.3–0.8 suggested
range)

MIN_VOLUMEMinimum cavity volume to accept (in Å3,
not grid points)

float (Å3) 100 >0 (100–300 suggested
range)

3.8.5 Cavity restraint

The cavity restraint penalty function is mandatory and is designed to prevent the ligand from exiting the docking site.
The function is calculated over all non-hydrogen atoms in the ligand (and over all explicit water oxygens that can
translate). The distance from each atom to the nearest cavity grid point is calculated. If the distance exceeds the value
of RMAX, a penalty is imposed based on the value of (distance - RMAX). The penalty can be either linear or quadratic
depending on the value of the QUADRATIC parameter. It should not be necessary to change any the parameters in this
section. Note that the docking protocol itself will manipulate the WEIGHT parameter, so any changes made to WEIGHT
will have no effect.

SECTION CAVITY
SCORING_FUNCTION RbtCavityGridSF
WEIGHT 1.0
RMAX 0.1
QUADRATIC FALSE

END_SECTION

3.8.6 Pharmacophore restraints

This section need only be defined if you wish to dock with pharmacophore restraints. If you are running conventional
free docking then this section is not required. All pharmacophore definition parameters should be defined in SECTION
PHARMA.

74 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.13: Pharmacophore restraint parameters

Pa-
ram-
eter

Description Type De-
fault

Range of
values

CONSTRAINTS_FILEMandatory pharmacophore restraints file File
name
string

None
(manda-
tory
pa-
rame-
ter)

Valid file
name

OPTIONAL_FILEOptional pharmacophore restraints file File
name
string

None
(op-
tional
pa-
rame-
ter)

Valid file
name, or
empty

NOPT Number of optional restraints that should be met In-
te-
ger

0 Between
0 and
number of
restraints in
OPTIONAL_FILE

WRITE_ERRORSLigands with insufficient pharmacophore features to match the mandatory
restraints are always removed prior to docking. If this parameter is true, the
pre-filtered ligands are written to an error SD file with the same root name
as the docked pose output SD file, but with an _errors.sd suffix. If false,
the pre-filtered ligands are not written.

BooleanFALSE TRUE of
FALSE

WEIGHTOverall weight for the pharmacophore penalty function Float 1.0 >=0.0

Calculation of mandatory restraint penalty The list of ligand atoms that matches each restraint type in the mandatory
restraints file is precalculated for each ligand as it is loaded. If the ligand contains insufficient features to satisfy all of
the mandatory restraints the ligand is rejected and is not docked. Note that the rejection is based purely on feature counts
and does not take into account the possible geometric arrangements of the features. Rejected ligands are optionally
written to an error SD file. The penalty for each restraint is based on the distance from the nearest matching ligand
atom to the pharmacophore restraint centre. If the distance is less than the defined tolerance (restraint sphere radius),
the penalty is zero. If the distance is greater than the defined tolerance a quadratic penalty is applied, equal to (nearest
distance - tolerance)2.

Calculation of optional restraint penalty The individual restraint penalties for each restraint in the optional restraints
file are calculated in the same way as for the mandatory penalties. However, only the NOPT lowest scoring (least
penalised) restraints are summed for any given docking pose. Any remaining higher scoring optional restraints are
ignored and do not contribute to the total pharmacophore restraint penalty.

Calculation of overall restraint penalty The overall pharmacophore restraint penalty is the sum of the mandatory
restraint penalties and the NOPT lowest scoring optional restraint penalties, multiplied by the WEIGHT parameter value.

3.8. System definition file 75

RxDock Documentation, Release 0.1.0

3.8.7 NMR restraints

To be completed. However, this feature has rarely been used.

3.8.8 Example system definition files

Full system definition file with all sections and common parameters enumerated explicitly:

RBT PARAMETER_FILE_V1.00
TITLE HSP90-PU3-lig-cavity, solvent flex=5
RECEPTOR_FILE PROT_W3_flex.mol2
RECEPTOR_SEGMENT_NAME PROT
RECEPTOR_FLEX 3.0
SECTION SOLVENT

FILE PROT_W3_flex_5.pdb
TRANS_MODE TETHERED
ROT_MODE TETHERED
MAX_TRANS 1.0
MAX_ROT 30.0
OCCUPANCY 0.5

END_SECTION
SECTION_LIGAND

TRANS_MODE FREE
ROT_MODE FREE
DIHEDRAL_MODE FREE
MAX_TRANS 1.0
MAX_ROT 30.0
MAX_DIHEDRAL 30.0

END_SECTION
SECTION MAPPER

SITE_MAPPER RbtLigandSiteMapper
REF_MOL ref.sd
RADIUS 5.0
SMALL_SPHERE 1.0
MIN_VOLUME 100
MAX_CAVITIES 1
VOL_INCR 0.0
GRIDSTEP 0.5

END_SECTION
SECTION CAVITY

SCORING_FUNCTION RbtCavityGridSF
WEIGHT 1.0

END_SECTION
SECTION PHARMA

SCORING_FUNCTION RbtPharmaSF
WEIGHT 1.0
CONSTRAINTS_FILE mandatory.const
OPTIONAL FILE optional.const
NOPT 3
WRITE_ERRORS TRUE

END_SECTION

76 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

3.9 Molecular files and atom typing

Macromolecular targets (protein or RNA) are input from Tripos MOL2 files (RbtMOL2FileSource class) or from pairs
of Charmm PSF (RbtPsfFileSource class) and CRD (RbtCrdFileSource class) files. Ligands are input from MDL
Information Systems (MDL) structure data (SD) files (RbtMdlFileSource class). Explicit structural waters are input
optionally from PDB files (RbtPdbFileSource class). Ligand docking poses are output to MDL SD files.

The RxDock scoring functions have been defined and validated for implicit non-polar hydrogen (extended carbon)
models only. If you provide all-atom models, be aware that the non-polar hydrogens will be removed automatically.
Polar hydrogens must be defined explicitly in the molecular files, and are not added by RxDock. Positive ionisable and
negative ionisable groups can be automatically protonated and deprotonated respectively to create common charged
groups such as guanidinium and carboxylic acid groups.

MOL2 is now the preferred file format for RxDock as it eliminates many of the atom typing issues inherent in preparing
and loading PSF files. The use of PSF/CRD files is strongly discouraged. The recommendation is to prepare an all-atom
MOL2 file with correct Tripos atom types assigned, and allow RxDock to remove non-polar hydrogens on-the-fly.

3.9.1 Atomic properties

RxDock requires the following properties to be defined per atom. Depending on the file format, these properties may
be loaded directly from the molecular input file, or derived internally once the model is loaded:

• Cartesian (x,y,z) coordinates

• Element (atomic number)

• Formal hybridisation state (sp, sp2, sp3, aromatic, trigonal planar)

• Formal charge

• Distributed formal charge (known informally as group charge)

• Tripos force field type (RxDock uses a modified version of the Sybyl 5.2 types, extended to include carbon types
with implicit non-polar hydrogens)

• Atom name

• Substructure (residue) name

• Atomic radius (assigned per element from $RBT_ROOT/data/RbtElements.dat)

Note: The RxDock scoring functions do not use partial charges and therefore partial charges do not have to be defined.
The atomic radii are simplified radii defined per element, and are used for cavity mapping and in the polar scoring
function term, but are not used in the vdW scoring function term. The latter has its own indepedent parameterisation
based on the Tripos force field types.

3.9. Molecular files and atom typing 77

RxDock Documentation, Release 0.1.0

3.9.2 Difference between formal charge and distributed formal charge

The formal charge on an atom is always an integer. For example, a charged carboxylic acid group (COO-) can be defined
formally as a formal double bond to a neutral oxygen sp2, and a formal single bond to a formally charged oxygen sp3.
In reality of course, both oxygens are equivalent. RxDock distributes the integer formal charge across all equivalent
atoms in the charged group that are topologically equivalent. In negatively charged acid groups, the formal charge is
distributed equally between the acid oxygens. In positively charged amines, the formal charge is distributed equally
between the hydrogens. In charged guanidinium, amidinium, and imidazole groups, the central carbon also receives an
equal portion of the formal charge (in addition to the hydrogens). The distributed formal charge is also known as the
group charge. The polar scoring functions in RxDock use the distributed formal charge to scale the polar interaction
strength of the polar interactions.

3.9.3 Parsing a MOL2 file

MOLECULE, ATOM, BOND, and SUBSTRUCTURE records are parsed. The atom name, substructure name, Cartesian coordi-
nates and Tripos atom type are read directly for each atom. The element type (atomic number) and formal hybridisation
state are derived from the Tripos type using an internal lookup table. Formal charges are not read from the MOL2 file
and do not have to be assigned correctly in the file. Distributed formal charges are assigned directly by RxDock based
on standard substructure and atom names as described below.

3.9.4 Parsing an SD file

Cartesian coordinates, element and formal charge are read directly for each atom. Formal bond orders are read for
each bond. Atom names are derived from element name and atom ID (e.g. C1, N2, C3). The substructure name is
MOL. Formal hybridisation states are derived internally for each atom based on connectivity patterns and formal bond
orders. The Tripos types are asssigned using internal rules based on atomic number, formal hybridisation state and
formal charges. The integer formal charges are distributed automatically across all topologically equivalent atoms in
the charged group.

3.9.5 Assigning distributed formal charges to the receptor

RxDock provides a file format independent method for assigning distributed formal charges directly to the receptor
atoms, which is used by the MOL2 and PSF/CRD file readers. The method uses a lookup table based on standard
substructure and atom names, and does not require the integer formal charges to be assigned to operate correctly.

The lookup table file is $RBT_ROOT/data/sf/RbtIonicAtoms.prm. Each section name represents a substructure
name that contains formally charged atoms. The entries within the section represent the atom names and distributed
formal charges for that substructure name. The file provided with RxDock contains entries for all standard amino acids
and nucleic acids, common metals, and specific entries required for processing the GOLD CCDC/Astex validation sets.

Important: You may have to extend RbtIonicAtoms.prm if you are working with non-standard receptor substructure
names and/or atom names, in order for the distributed formal charges to be assigned correctly.

78 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

3.10 File formats

3.10.1 .prm file format

The .prm file format is an RxDock-specific text format and is used for:

• system definition files (known previously as receptor .prm files)

• scoring function definition files

• search protocol definition files

The format is simple and allows for an arbitrary number of named parameter/value pairs to be defined, optionally
divided into named sections. Sections provide a namespace for parameter names, to allow parameter names to be
duplicated within different sections. The key features of the format are:

• The first line of the file must be RBT_PARAMETER_FILE_V1.00 with no preceeding whitespace.

• Subsequent lines may contain either:

1. comment lines

2. reserved keywords TITLE, SECTION, or END_SECTION

3. parameter name/value pairs

• Comment lines should start with a # character in the first column with no preceeding whitespace, and are ignored.

• The reserved words must start in the first column with no preceeding whitespace.

• The TITLE record should occur only once in the file and is used to provide a title string for display by various
scripts such as run rbscreen.pl. The keyword should be followed by a single space character and then the title
string, which may contain spaces. If the TITLE line occurs more than once, the last occurence is used.

• SECTION records can occur more than once, and should always be paired with a closing END_SECTION record.
The keyword should be followed by a single space character and then the section name, which may NOT itself
contain spaces. All section names must be unique within a .prm file. All parameter name/value pairs within the
SECTION / END_SECTION block belong to that section.

• Parameter name/value pairs are read as free-format tokenised text and can have preceeding, trailing, and be sepa-
rated by arbitrary whitespace. This implies that the parameter name and value strings themselves are not allowed
to contain any spaces. The value strings are interpreted as numeric, string, or boolean values as appropriate for
that parameter. Boolean values should be entered as TRUE or FALSE uppercase strings.

Caution: The current implementation of the .prm file reader does not tolerate a tab character immediately following
the TITLE and SECTION keywords. It is very important that the first character after the SECTION keyword in
particular is a true space character, otherwise the reserved word will not be detected and the parameters for that
section will be ignored.

Example .prm file In the following example, RECEPTOR_FILE is defined in the top level namespace. The remaining pa-
rameters are defined in the MAPPER and CAVITY namespaces. The indentation is for readability, and has no significance
in the format.

RBT_PARAMETER_FILE_V1.00
TITLE 4dfr oxido-reductase

RECEPTOR_FILE 4dfr.mol2

(continues on next page)

3.10. File formats 79

RxDock Documentation, Release 0.1.0

(continued from previous page)

SECTION MAPPER
SITE_MAPPER RbtLigandSiteMapper
REF_MOL 4dfr_c.sd
RADIUS 6.0
SMALL_SPHERE 1.0
MIN_VOLUME 100
MAX_CAVITIES 1
VOL_INCR 0.0
GRIDSTEP 0.5

END_SECTION

SECTION CAVITY
SCORING_FUNCTION RbtCavityGridSF
WEIGHT 1.0

END_SECTION

3.10.2 Water PDB file format

RxDock requires explicit water PDB files to be in the style as output by the Dowser program. In particular:

• Records can be HETATM or ATOM

• The atom names must be OW, H1 and H2

• The atom records for each water molecule must belong to the same subunit ID

• The subunit IDs for different waters must be distinct, but do not have to be consecutive

• The atom IDs are not used and do not have to be consecutive (they can even be duplicated)

• The order of the atom records within a subunit is unimportant

• The temperature factor field of the water oxygens can be used to define the per-solvent flexibility modes. The
temperature factors of the water hydrogens are not used.

Table 3.14: Conversion of temperature values to solvent flexibility modes

PDB temperature factor Solvent translational flexibility Solvent rotational flexibility
0 FIXED FIXED
1 FIXED TETHERED
2 FIXED FREE
3 TETHERED FIXED
4 TETHERED TETHERED
5 TETHERED FREE
6 FREE FIXED
7 FREE TETHERED
8 FREE FREE

Example Valid RxDock PDB file for explicit, flexible waters:

REMARK tmp 1YET.pdb xtal_hoh.pdb
HETATM 3540 OW HOH W 106 28.929 12.684 20.864 1.00 1.0
HETATM 3540 H1 HOH W 106 28.034 12.390 21.200 1.00
HETATM 3540 H2 HOH W 106 29.139 12.204 20.012 1.00

(continues on next page)

80 Chapter 3. Reference guide

https://www.ks.uiuc.edu/Research/vmd/plugins/dowser/

RxDock Documentation, Release 0.1.0

(continued from previous page)

HETATM 3542 OW HOH W 108 27.127 14.068 22.571 1.00 2.0
HETATM 3542 H1 HOH W 108 26.632 13.344 23.052 1.00
HETATM 3542 H2 HOH W 108 27.636 13.673 21.806 1.00
HETATM 3679 OW HOH W 245 27.208 10.345 27.250 1.00 3.0
HETATM 3679 H1 HOH W 245 27.657 10.045 26.409 1.00
HETATM 3679 H2 HOH W 245 26.296 10.693 27.036 1.00
HETATM 3680 OW HOH W 246 31.737 12.425 21.110 1.00 4.0
HETATM 3680 H1 HOH W 246 31.831 12.448 22.106 1.00
HETATM 3680 H2 HOH W 246 30.775 12.535 20.863 1.00

3.10.3 Pharmacophore restraints file format

Pharmacophore restraints are defined in a simple text file, with one restraint per line. Each line should contain the
following values, separated by commas or whitespace:

x y z coords of restraint centre, tolerance (in Angstroms), restraint type string

The supported restraint types are:

Table 3.15: Pharmacophore restraint types

String Description Matches
Any Any atom Any non-hydrogen atom
Don H-bond donor Any neutral donor hydrogen
Acc H-bond acceptor Any neutral acceptor
Aro Aromatic Any aromatic ring centre (pseudo atom)
Hyd Hydrophobic Any non-polar hydrogens (if present), any C sp3 or S sp3, any C or S not bonded to

O sp2, any Cl, Br, I
Hal Hydrophobic,

aliphatic
Subset of Hyd, sp3 atoms only

Har Hydrophobic, aro-
matic

Subset of Hyd, aromatic atoms only

Ani Anionic Any atom with negative distributed formal charge
Cat Cationic Any atom with positive distributed formal charge

3.11 Programs

Programs summary tables:

Table 3.16: Core RxDock C++ executables

Executable Used for Description
rbcavity Preparation Cavity mapping and preparation of docking site (.as) file.
rbcalcgrid Preparation Calculation of vdW grid files (usually called by make_grid.csh wrapper script).
rbdock Docking The main RxDock docking engine itself.

3.11. Programs 81

RxDock Documentation, Release 0.1.0

Table 3.17: Auxiliary RxDock programs

Exe-
cutable

Used
for

Description

sdtether Prepa-
ra-
tion

Prepares a ligand SD file for tethered scaffold docking. Annotates ligand SD file with tethered
substructure atom indices. Requires Open Babel Python bindings.

rbhtfinderPrepa-
ra-
tion

Used to optimise a high-throughput docking protocol from an initial exhaustive docking of a
small representative ligand library. Parametrize a multi-step protocol for your system.

make_grid.
csh

Prepa-
ra-
tion

Creates the vdW grid files required for grid-based docking protocols (dock_grid.prm and
dock_solv_grid.prm). Simple front-end to rbcalcgrid.

rbconvgridAnal-
ysis

Converts RxDock vdW grids to InsightII grid format for visualisation.

rbmoegridAnal-
ysis

Converts RxDock vdW grids to MOE grid format for visualisation.

rblist Anal-
ysis

Outputs miscellaneous information for ligand SD file records.

sdrmsd Anal-
ysis

Calculation of ligand Root Mean Squared Displacement (RMSD) between reference and docked
poses, taking into account ligand topological symmetry. Requires Open Babel Python bindings.

sdfilter Anal-
ysis

Utility for filtering SD files by arbitrary data field expressions. Useful for simple post-docking
filtering by score components.

sdsort Anal-
ysis

Utility for sorting SD files by arbitrary data field. Useful for simple post-docking filtering by
score components.

sdreport Anal-
ysis

Utility for reporting SD file data field values. Output in tab-delimited or CSV format.

sdsplit Util-
ity

Splits an SD file into multiple smaller SD files of fixed number of records.

sdmodify Util-
ity

Sets the molecule title line of each SD record equal to a given SD data field.

3.11.1 Programs reference

rbdock

rbdock – The RxDock docking engine itself.

$RBT_ROOT/bin/rbdock
{-i input ligand MDL SD file}
{-o output MDL SD file}
{-r system definition.prm file}
{-p docking protocol.prm file}
[-n number of docking runs/ligand]
[-s random seed]
[-T debug trace level]
[[-t SCORE.INTER threshold] | [-t filter definition file]]
[-ap -an -allH -cont]

82 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Simple exhaustive docking

The minimum requirement for rbdock is to specify the input (-i) and output (-o) ligand SD file names, the system
definition .prm file (-r) and the docking protocol .prm file (-p). This will perform one docking run per ligand record
in the input SD file and output all docked ligand poses to the output SD file. Use -n to increase the number of docking
runs per ligand record.

High-throughput docking, option 1

The -t and -cont options can be used to construct high-throughput protocols. If the argument following -t is nu-
meric it is interpreted as a threshold value for SCORE.INTER, the total intermolecular score between ligand and re-
ceptor/solvent. In the absence of -cont, the threshold acts as an early termination filter, and the docking runs for each
ligand will be terminated early once the threshold value has been exceeded. Note that the threshold is applied only at
the end of each individual docking run, not during the runs themselves. If the -cont (continue) option is specified as
well, the threshold acts as an output pose filter instead of a termination filter. The docking runs for each ligand run to
completion as in the exhaustive case, but only the docking poses that exceed the threshold value of SCORE.INTER are
written to the output SD file.

High throughput docking, option 2

Alternatively, if the argument following -t is non-numeric it is interpreted as a filter definition file. The filter definition
file can be used to define multiple termination filters and multiple output pose filters in a generic way. Any docking
score component can be used in the filter definitions. run_rbscreen.pl generates a filter definition file for multi-
stage, high-throughput docking, with progressive score thresholds for early termination of poorly performing ligands.
The use of filter definition files is preferred over the more limited SCORE.INTER filtering described above, whose use
is now deprecated.

Automated ligand protonation/deprotonation

The -ap option activates the automated protonation of ligand positive ionisable centres, notably amines, guanidines,
imidazoles, and amidines. The -an option activates the automated deprotonation of ligand negative ionisable centres,
notably carboxylic acids, phosphates, phosphonates, sulphates, and sulphonates. The precise rules used by RxDock
for protonation and deprotonation are quite crude, and are not user-customisable. Therefore these flags are not rec-
ommended for detailed validation experiments, in which care should be taken that the ligand protonation states are set
correctly in the input SD file. Note that RxDock is not capable of converting ionised centres back to the neutral form;
these are unidirectional transformations.

Control of ligand non-polar hydrogens

By default, RxDock uses an implicit non-polar hydrogen model for receptor and ligand, and all of the scoring function
validation has been performed on this basis. If the -allH option is not defined (recommended), all explicit non-polar
hydrogens encountered in the ligand input SD file are removed, and only the polar hydrogens (bonded to O, N, or S)
are retained. If the -allH option is defined (not recommended), no hydrogens are removed from the ligand. Note
that RxDock is not capable of adding explicit non-polar hydrogens, if none exist. In other words, the -allH option
disables hydrogen removal, it does not activate hydrogen addition. You should always make sure that polar hydrogens
are defined explicitly. If the ligand input SD file contains no explicit non-polar hydrogens, the -allH option has no
effect. Receptor protonation is controlled by the system definition prm file.

3.11. Programs 83

RxDock Documentation, Release 0.1.0

rbcavity

rbcavity – Cavity mapping and preparation of docking site (.as) file.

$RBT_ROOT/bin/rbcavity
{-r system definition .prm file}
[-ras -was -d -v -s]
[-l distance from cavity]
[-b border]

Exploration of cavity mapping parameters

rbcavity -r .prm file

You can run rbcavity with just the -r argument when first preparing a new receptor for docking. This allows you to
explore rapidly the impact of the cavity mapping parameters on the generated cavities, whilst avoiding the overhead of
actually writing the docking site (.as) file to disk. The number of cavities and volume of each cavity are written to
standard output.

Visualisation of cavities

rbcavity -r .prm file -d

If you have access to InsightII you can use the -d option to dump the cavity volumes in InsightII grid file format. There
is no need to write the docking site (.as) file first. The InsightII grid files should be loaded into the reference coordinate
space of the receptor and contoured at a contour level of 0.99.

Writing the docking site (.as) file

rbcavity -r .prm file -was

When you are happy the mapping parameters, use the -was option to write the docking site (.as) file to disk. The
docking site file is a binary file that contains the cavity volumes in a compact format, and a pre-calculated cuboid grid
extending over the cavities. The grid represents the distance from each point in space to the nearest cavity grid point,
and is used by the cavity penalty scoring function. Calculating the distance grid can take a long time (whereas the
cavity mapping itself is usually very fast), hence the -was option should be used sparingly.

Analysis of cavity atoms

rbcavity -r .prm file -ras -l distance

Use the -l options to list the receptor atoms within a given distance of any of the cavity volumes, for example to deter-
mine which receptor OH/NH3+ groups should be flexible. This option requires access to the pre-calculated distance
grid embedded within the docking site (.as) file, and is best used in combination with the -ras option, which loads
a previously generated docking site file. This avoids the time consuming step of generating the cavity distance grid
again. If -l is used without -ras, the cavity distance grid will be calculated on-the-fly each time.

84 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Miscellaneous options

The -s option writes out various statistics on the cavity and on the receptor atoms in the vicinity of the cavity. These
values have been used in genetic programming model building for docking pose false positive removal. The -v option
writes out the receptor coordinates in PSF/CRD format for use by the rDock Viewer (not documented here). Note
that the PSF/CRD files are not suitable for simulation purposes, only for visualisation, as the atom types are not set
correctly. The -b option controls the size of the cavity distance grid, and represents the border beyond the actual cavity
volumes. It should not be necessary to vary this parameter (default = 8 Å) unless longer-range scoring functions are
implemented.

rbcalcgrid

rbcalcgrid – Calculation of vdW grid files (usually called by make_grid.csh wrapper script).

$RBT_ROOT/bin/rbcalcgrid
{-r system definition file}
{-o output suffix for generated grids}
{-p vdW scoring function prm file}
[-g grid step]
[-b border]

Note that, unlike rbdock and rbcavity, spaces are not tolerated between the command-line options and their corre-
sponding arguments. See $RBT_ROOT/bin/make_grid.csh for common usage.

make_grid.csh

Creates vdW grids for all receptor .prm files listed on command line. Front-end to rbcalcgrid.

rbconvgrid

rbmoegrid

rbmoegrid – Calculates grids for a given atom type.

rbmoegrid -o <OutputRoot> -r <ReceptorPrmFile> -p <SFPrmFile> [-g <GridStep> -b <border>␣
→˓-t <tripos_type>]

-o <OutFileName> (.grd is suffiexed)
-r <ReceptorPrmFile> - receptor param file (contains active site params)
-p <SFPrmFile> - scoring function param file (default calcgrid_vdw.prm)
-g <GridStep> - grid step (default = 0.5A)
-b <Border> - grid border around docking site (default = 1.0A)
-t <AtomType> - Tripos atom type (default is C.3)

3.11. Programs 85

RxDock Documentation, Release 0.1.0

sdrmsd

sdrmsd – calculation of ligand root mean squared displacement (RMSD) between reference and docked poses. It takes
into account molecule topological symmetry. Requires Open Babel Python bindings.

$RBT_ROOT/bin/sdrmsd [options] {reference SD file} {input SD file}

With two arguments

sdrmsd calculates the RMSD between each record in the input SD file and the first record of the reference SD file.
If there is a mismatch in the number of atoms, the record is skipped and the RMSD is not calculated. The RMSD
is calculated over the heavy (non-hydrogen) atoms only. Results are output to standard output. If some record was
skipped, a warning message will be printed to standard error.

With fitting

A molecular superposition will be done before calculation of the RMSD. The output will specify an RMSD FIT cal-
culation was done.

sdrmsd -o output.sdf reference.sdf input.sdf
sdrmsd --out=output.sdf reference.sdf input.sdf

Output a SD file

This option will write an output SD file with the input molecules adding an extra RMSD field to the file. If fitting was
done, the molecule coordinates will also be fitted to the reference.

sdrmsd -o output.sdf reference.sdf input.sdf
sdrmsd --out=output.sdf reference.sdf input.sdf

sdtether

sdtether – Prepares a ligand SD file for tethered scaffold docking. Requires Open Babel Python bindings. Annotates
ligand SD file with tethered substructure atom indices.

$RBT_ROOT/bin/sdtether {ref. SDfile} {in SDfile} {out SDfile} "{SMARTS query}"

sdtether performs the following actions:

• Runs the SMARTS query against the reference SD file to determine the tethered substructure atom indices and
coordinates.

• If more than one substructure match is retrieved (e.g. due to topological symmetry, or if the query is too simple)
all substructure matchs are retained as the reference and all ligands will be tethered according to all possible
matches.

• Runs the SMARTS query against each record of the input ligand SD file in turn.

• For each substructure match, the ligand coordinates are transformed such that the principal axes of the matching
substructure coordinates are aligned with the reference substructure coordinates.

86 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

• In addition, an SD data field is added to the ligand record which lists the atom indices of the substructure match,
for later retrieval by RxDock.

• Each transformed ligand is written to the output SD file.

• Note that if the SMARTS query returns more than one substructure match for a ligand, that ligand is written
multiple times to the output file, once for each match, each of which will be docked independently with different
tethering information.

sdfilter

sdfilter – Post-process an SD file by filtering the records according to data fields or attributes.

sdfilter -f '$<DataField> <Operator> <Value>' [-s <DataField>] [sdFiles]

or

sdfilter -f <filename> [-s <DataField>] [sdFiles]

Note: Multiple filters are allowed and are OR’d together. Filters can be provided in a file, one per line. Standard Perl
operators should be used. e.g.

eq ne lt gt le ge # for strings
== != < > <= >= # for numeric

_REC (record #) is provided as a pseudo-data field. If -s option is used, _COUNT (#occurrences of DataField) is provided
as a pseudo-data field. If SD file list not given, reads from standard input. Output is to standard output.

For example, if results.sd constains multiple ligands each having multiple poses (ordered by score), then running

sdfilter -f'$_COUNT == 1' results.sd

will get you the first entry for each ligand.

sdreport

sdreport – Produces text summaries of SD records.

sdreport [-l] [-t [<FieldName, FieldName...>]] [-c <FieldName, FieldName...>] [-id
→˓<IDField>] [-nh] [-o] [-s] [-sup] [sdFiles]

-l (list format) output all data fields for each record as processed
-t (tab format) tabulate selected fields for each record as processed
-c (csv format) comma delimited output of selected fields for each record as processed
-s (summary format) output summary statistics for each unique value of ligand ID
-sup (supplier format) tabulate supplier details (from Catalyst)
-id <IDField> data field to use as ligand ID
-nh don't output column headings in -t and -c formats
-o use old (v3.00) score field names as default columns in -t and -c formats, else use␣
→˓v4.00 field names
-norm use normalised score filed names as default columns in -t and -c formats␣
→˓(normalised = score / #ligand heavy atoms)

3.11. Programs 87

RxDock Documentation, Release 0.1.0

Note: If -l, -t or -c are combined with -s, the listing/table is output withing each ligand summary. -sup should
not be combined with other options. Default field names for -t and -c are RiboDock score field names. Default ID
field name is Name. If sdFiles not given, reads from standard input. Output is to standard output.

sdsplit

sdsplit – Splits SD records into multiple files of equal size.

sdsplit [-<RecSize>] [-o <OutputRoot>] [sdFiles]

-<RecSize> record size to split into (default = 1000 records)
-o <OutputRoot> Root name for output files (default = tmp)

Note: If SD file list not given, reads from standard input.

sdsort

sdsort – Sorts SD records by given data field.

sdsort [-n] [-r] [-f <DataField>] [sdFiles]

-n numeric sort (default is text sort)
-r descending sort (default is ascending sort)
-f <DataField> specifies sort field
-s fast mode. Sorts the records for each named compound independently (must be␣
→˓consecutive)
-id <NameField> specifies compound name field (default = 1st title line)

Note: _REC (record #) is provided as a pseudo-data field. If SD file list not given, reads from standard input. Output
is to standard output. Fast mode can be safely used for partial sorting of huge SD files of raw docking hits without
running into memory problems.

sdmodify

sdmodify – Script to set the first title line equal to a given data field.

sdmodify -f <DataField> [sdFiles]

Note: If sdFiles not given, reads from standard input. Output is to standard output.

88 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

rbhtfinder

rbhtfinder – Script that simulates the result of a high throughput protocol.

1st) exhaustive docking of a small representative part of the
whole library.

2nd) Store the result of sdreport -t over that exhaustive dock.
in file that will be the input of this
script.

3rd) rbhtfinder <sdreport_file> <output_file> <thr1max> <thr1min> <ns1> <ns2>
<ns1> and <ns2> are the number of steps in stage 1 and in
stage 2. If not present, the default values are 5 and 15
<thrmax> and <thrmin> setup the range of thresholds that will
be simulated in stage 1. The threshold of stage 2 depends
on the value of the threshold of stage 1.
An input of -22 -24 will try protocols:

5 -22 15 -27
5 -22 15 -28
5 -22 15 -29
5 -23 15 -28
5 -23 15 -29
5 -23 15 -30
5 -24 15 -29
5 -24 15 -30
5 -24 15 -31

Output of the program is a 7 column values. First column
represents the time. This is a percentage of the time it
would take to do the docking in exhaustive mode, i.e.
docking each ligand 100 times. Anything
above 12 is too long.
Second column is the first percentage. Percentage of
ligands that pass the first stage.
Third column is the second percentage. Percentage of
ligands that pass the second stage.
The four last columns represent the protocol.
All the protocols tried are written at the end.
The ones for which time is less than 12%, perc1 is
less than 30% and perc2 is less than 5% but bigger than 1%
will have a series of *** after, to indicate they are good choices
WARNING! This is a simulation based in a small set.
The numbers are an indication, not factual values.

An example file would look like as follows:

3 steps as the running filters (set by the "3" in next line)
3
if - -10 SCORE.INTER 1.0 if - SCORE.NRUNS 9 0.0 -1.0,
if - -20 SCORE.INTER 1.0 if - SCORE.NRUNS 14 0.0 -1.0,
if - SCORE.NRUNS 49 0.0 -1.0,
1 writing filter (defined by the "1" in next line)
1
- SCORE.INTER -10,

In other (more understandable) words.

3.11. Programs 89

RxDock Documentation, Release 0.1.0

First, RxDock runs 3 consecutive steps:

1. Run 10 runs and check if the SCORE.INTER is lower than -10, if it is the case:

2. Then run 5 more runs (until 15 runs) to see if the SCORE.INTER reaches -20. If it is the case:

3. Run up to 50 runs to freely sample the different conformations the molecule displays.

And, second:

For the printing information, only print out all those poses where SCORE.INTER is better than -10 (for avoiding excessive
printing).

rblist

rblist – Output interaction center info for ligands in SD file (with optional autoionisation).

rblist -i <InputSDFile> [-o <OutputSDFile>] [-ap] [-an] [-allH]

-i <InputSDFile> - input ligand SD file
-o <OutputSDFilde> - output SD file with descriptors (default = no output)
-ap - protonate all neutral amines, guanidines, imidazoles (default = disabled)
-an - deprotonate all carboxylic, sulphur and phosphorous acid groups (default =␣
→˓disabled)
-allH - read all hydrogens present (default = polar hydrogens only)
-tr - rotate all secondary amides to trans (default = leave alone)
-l - verbose listing of ligand atoms and rotable bonds (default = compact table format)

3.12 Appendix

Table 3.18: Van der Waals parameters in Tripos 5.2 force field (R = radius
(Å); K = well depth (kcal/mol); IP = Ionization potential (eV); POL =
polarisability (1025 cm3)).

Atom Type R K IP POL Description
H 1.5 0.042 13.6 4 Non-polar hydrogen
H.P 1.2 0.042 13.6 4 Polar hydrogen
C.3 1.7 0.107 14.61 13.8 C sp3 (0 implicit H)
C.3.H1 1.8 0.107 14.61 16.38 C sp3 (1 implicit H)
C.3.H2 1.9 0.107 14.61 19.27 C sp3 (2 implicit H)
C.3.H3 2 0.107 14.61 22.47 C sp3 (3 implicit H)
C.2 1.7 0.107 15.62 13.8 C sp2 (0 implicit H)
C.cat 1.7 0.107 15.62 13.8 C sp2 (guanidinium centre)
C.2.H1 1.8 0.107 15.62 16.38 C sp2 (1 implicit H)
C.2.H2 1.9 0.107 15.62 19.27 C sp2 (2 implicit H)
C.ar 1.7 0.107 15.62 13.8 C aromatic (0 implicit H)
C.ar.H1 1.8 0.107 15.62 16.38 C aromatic (1 implicit H)
C.1 1.7 0.107 17.47 13.8 C sp (0 implicit H)
C.1.H1 1.8 0.107 17.47 16.38 C sp (1 implicit H)
N.4 1.55 0.095 33.29 8.4 N sp3+ (cationic)
N.3 1.55 0.095 18.93 8.4 N sp3
N.pl3 1.55 0.095 19.72 8.4 N trigonal planar (non-amide)

continues on next page

90 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.18 – continued from previous page
Atom Type R K IP POL Description
N.am 1.55 0.095 19.72 8.4 N trigonal planar (amide)
N.2 1.55 0.095 22.1 8.4 N sp2
N.ar 1.55 0.095 22.1 8.4 N aromatic
N.1 1.55 0.095 23.91 8.4 N sp
O.3 1.52 0.116 24.39 5.4 O sp3
O.2 1.52 0.116 26.65 5.4 O sp2
O.co2 1.52 0.116 35.12 5.4 O carboxylate
S.3 1.8 0.314 15.5 29.4 S sp3
S.o 1.7 0.314 15.5 29.4 sulfoxide
S.o2 1.7 0.314 15.5 29.4 sulfone
S.2 1.8 0.314 17.78 29.4 S sp2
P.3 1.8 0.314 16.78 40.6
F 1.47 0.109 20.86 3.7
Cl 1.75 0.314 15.03 21.8
Br 1.85 0.434 13.1 31.2
I 1.98 0.623 12.67 49
Na 1.2 0.4
K 1.2 0.4
UNDEFINED 1.2 0.042

Table 3.19: Geometrical parameters for empirical terms (a = Geometric
variable; b = Ideal value; c = Tolerance on ideal value; d = Deviation at
which score is reduced to zero).

Term 𝑋a 𝑋0
b 𝑋min

c 𝑋max
d Description

𝑆polar 𝑅12 𝑅 + 0.05
Å

0.25
Å

0.6 Å Distance between interaction centres

𝛼DON 180° 30° 80° Angle around donor H
𝛼ACC 180° 60° 100° Angle around acceptor
𝛼C+ 180° 60° 100° Angle between C+ACC vector and normal to plane of guani-

dinium group
𝜑ACC_LP 45° 15° 15° From [RiboDock2004] Figure 2.
𝜃ACC_LP 0° 20° 60° From [RiboDock2004] Figure 2.
𝜑ACC_PLANE 0° 60° 75° From [RiboDock2004] Figure 2.
𝜃ACC_PLANE 0° 20° 60° From [RiboDock2004] Figure 2.

𝑆repul 𝑅12 R + 1.1 Å 0.25
Å

0.6 Å Distance between interaction centres

𝛼DON 180° 30° 60° Angle around donor H
𝛼ACC 180° 30° 60° Angle around acceptor

𝑆arom 𝑅perp 3.5 Å 0.25
Å

0.6 Å From [RiboDock2004] Figure 3.

𝛼slip 0° 20° 60° From [RiboDock2004] Figure 3.

3.12. Appendix 91

RxDock Documentation, Release 0.1.0

Table 3.20: Angular functions used to describe attractive and repulsive
polar interactions (a = Interaction centre types; b = angular functions in
equations (3.6)–(3.13)).

IC1a ANGIC1
b IC2a ANGIC2

b

Attractive (𝑆polar)
DON 𝑓1(|∆𝛼DON|) ACC_LP 𝑓1(|∆𝜑ACC_LP|) · 𝑓1(|∆𝜃ACC_LP|)
DON 𝑓1(|∆𝛼DON|) ACC_PLANE 𝑓1(|∆𝜑ACC_PLANE|) · 𝑓1(|∆𝜃ACC_PLANE|)
DON 𝑓1(|∆𝛼DON|) ACC 𝑓1(|∆𝛼ACC|)
M+ 1 ACC_LP 𝑓1(|∆𝜑ACC_LP|) · 𝑓1(|∆𝜃ACC_LP|)
M+ 1 ACC_PLANE 𝑓1(|∆𝜑ACC_PLANE|) · 𝑓1(|∆𝜃ACC_PLANE|)
M+ 1 ACC 𝑓1(|∆𝛼ACC|)

1 ACC_LP
C+ 𝑓1(|∆𝛼C+|) ACC_PLANE 𝑓1(|∆𝛼ACC|)

1 ACC
Repulsive (𝑆repul)
DON 𝑓1(|∆𝛼DON|) DON 𝑓1(|∆𝛼DON|)
DON 𝑓1(|∆𝛼DON|) M+ 1
DON 𝑓1(|∆𝛼DON|) C+ 1
M+ 1 C+ 1
C+ 1 C+ 1
ACC_LP ACC_LP
ACC_PLANE 𝑓1(|∆𝛼ACC|) ACC_PLANE 𝑓1(|∆𝛼ACC|)
ACC ACC

Table 3.21: Solvation parameters (a = Frequency of occurrence in training
set).

Atom type Description 𝑁a 𝑟𝑖 𝑝𝑖 𝑤𝑖

C_sp3 Apolar carbon sp3 with 0 implicit H 48 1.7 2.149 0.8438
CH_sp3 Apolar carbon sp3 with 1 implicit H 59 1.8 1.276 0.0114
CH2_sp3 Apolar carbon sp3 with 2 implicit H 487 1.9 1.045 0.0046
CH3_sp3 Apolar carbon sp3 with 3 implicit H 409 2 0.88 0.0064
C_sp2 Apolar carbon sp2 with 0 implicit H 10 1.72 1.554 0.0789
CH_sp2 Apolar carbon sp2 with 1 implicit H 45 1.8 1.073 -0.0014
CH2_sp2 Apolar carbon sp2 with 2 implicit H 26 1.8 0.961 0.0095
C_sp2p Positive charged carbon sp2 2 1.72 1.554 -0.7919
C_ar Apolar aromatic carbon with 0 implicit H 116 1.72 1.554 0.017
CH_ar Apolar aromatic carbon with 1 implicit H 357 1.8 1.073 -0.0143
C_sp Carbon sp 24 1.78 0.737 -0.0052
C_sp3_P Polar carbon sp3 with 0 implicit H 6 1.7 2.149 -0.0473
CH_sp3_P Polar carbon sp3 with 1 implicit H 22 1.8 1.276 -0.0394
CH2_sp3_P Polar carbon sp3 with 2 implicit H 130 1.9 1.045 -0.0078
CH3_sp3_P Polar carbon sp3 with 3 implicit H 69 2 0.88 0.0033
C_sp2_P Polar carbon sp2 with 0 implicit H 57 1.72 1.554 -0.2609
CH_sp2_P Polar carbon sp2 with 1 implicit H 30 1.8 0.961 -0.005
CH2_sp2_P Polar carbon sp2 with 2 implicit H 1 1.8 0.961 0.0095
C_ar_P Polar aromatic carbon with 0 implicit H 53 1.72 1.554 -0.2609
CH_ar_P Polar aromatic carbon with 1 implicit H 34 1.8 1.073 -0.0015
H Explicit apolar hydrogen (not used) 0 1.2 1 0
HO Polar hydrogen bonded to O 54 1 0.944 0.0499

continues on next page

92 Chapter 3. Reference guide

RxDock Documentation, Release 0.1.0

Table 3.21 – continued from previous page
Atom type Description 𝑁a 𝑟𝑖 𝑝𝑖 𝑤𝑖

HN Polar hydrogen bonded to N 54 1.1 1.128 -0.0242
HNp Positively charged polar hydrogen bonded to N 23 1.2 1.049 -1.9513
HS Polar hydrogen bonded to S 4 1.2 0.928 0.0487
O_sp3 Ether oxygen 31 1.52 1.08 -0.138
OH_sp3 Alcohol/phenol oxygen 48 1.52 1.08 -0.272
O_tri Ester oxygen 59 1.52 1.08 0.0965
OH_tri Acid oxygen (neutral) 6 1.52 1.08 -0.0985
O_sp2 Oxygen sp2 83 1.5 0.926 -0.1122
ON Nitro group oxygen 18 1.5 0.926 -0.0055
Om Negatively charged oxygen (carboxylate etc.) 7 1.7 0.922 -0.717
N_sp3 Nitrogen sp3 with 0 attached H 8 1.6 1.215 -0.6249
NH_sp3 Nitrogen sp3 with 1 attached H 11 1.6 1.215 -0.396
NH2_sp3 Nitrogen sp3 with 2 attached H 11 1.6 1.215 -0.215
N_sp3p Nitrogen sp3+ 6 1.6 1.215 -0.1186
N_tri Amide nitrogen with 0 attached H 15 1.55 1.028 -0.23
NH_tri Amide nitrogen with 1 attached H 8 1.55 1.028 -0.4149
NH2_tri Amide nitrogen with 2 attached H 6 1.55 1.028 -0.1943
N_sp2 Nitrogen sp2 3 1.55 1.413 -0.0768
N_sp2p Nitrogen sp2+ 5 1.55 1.413 -0.2744
N_ar Aromatic nitrogen 26 1.55 1.413 -0.531
N_sp Nitrogen sp 6 1.55 1 -0.1208
S_sp3 Sulphur sp3 15 1.8 1.121 -0.0685
S_sp2 Sulphur sp2 5 1.8 1.121 -0.0314
P Phosphorous 10 1.8 1.589 -1.275
F Fluorine 99 1.47 0.906 0.0043
Cl Chlorine 132 1.75 0.906 -0.0096
Br Bromine 37 1.85 0.898 -0.0194
I Iodine 9 1.98 0.876 -0.0189
Metal All metals 0 0.7 1 -1.6667
UNDEFINED Undefined types 0 1.2 1 0

3.12. Appendix 93

RxDock Documentation, Release 0.1.0

94 Chapter 3. Reference guide

CHAPTER

FOUR

USER GUIDE

4.1 Docking in 3 steps

You will find in this page a short tutorial for running RxDock.

It has been divided in 3 steps:

1. System definition

2. Cavity generation

3. Docking

4.1.1 Step 1: System definition

First of all, we need to define the system.

Below these lines you have an example for a DUD system of a typical prm file (See Documentation for more informa-
tion):

RBT_PARAMETER_FILE_V1.00
TITLE gart_DUD

RECEPTOR_FILE gart_rdock.mol2
RECEPTOR_FLEX 3.0

##
CAVITY DEFINITION: REFERENCE LIGAND METHOD
##
SECTION MAPPER

SITE_MAPPER RbtLigandSiteMapper
REF_MOL xtal-lig.sd
RADIUS 6.0
SMALL_SPHERE 1.0
MIN_VOLUME 100
MAX_CAVITIES 1
VOL_INCR 0.0

GRIDSTEP 0.5
END_SECTION

############################
CAVITY RESTRAINT PENALTY

(continues on next page)

95

RxDock Documentation, Release 0.1.0

(continued from previous page)

############################
SECTION CAVITY

SCORING_FUNCTION RbtCavityGridSF
WEIGHT 1.0

END_SECTION

You will need this generated .prm file, a receptor structure mol2 file (gart_rdock.mol2) and a ligand file in the cavity
(xtal-lig.sd) for going to next stage.

Note: The receptor .mol2 file must be preparated (protonated, charged, etc.) prior to this stage. The program chosen
to do so is up to the user. As a suggestion, we usually work with MOE and/or Maestro.

4.1.2 Step 2: Cavity generation

Once the files are ready, a simple command will generate the cavity:

rbcavity -was -d -r <PRMFILE>

With the -d flag a grid .grd file is generated. This file can be visualized in a molecular viewer to check the generated
cavity.

For example, in PyMOL (after loading by: pymol <RECEPTOR>.mol2 <LIGAND>.sd <GRID>.grd), write the fol-
lowing command in the console:

isomesh cavity, <GRID>.grd, 0.99

4.1.3 Step 3: Docking

Once the cavity is defined and generated, a 50 runs-per-ligand RxDock job can be run straightforwardly with the
following command:

Note: The .prm file, receptor, reference ligand and .as cavity file must be in the working directory or pointed by the
environmental variable RBT_HOME.

rbdock -i <INPUT>.sd -o <OUTPUT> -r <PRMFILE> -p dock.prm -n 50

4.2 Docking strategies

This section does not pretend to be a comprehensive user guide. It does, however, highlight the key steps the user must
take for different docking strategies, and may serve as a useful checklist in writing such a guide in the future.

96 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

4.2.1 Standard docking

By standard docking, we refer to docking of a flexible, untethered ligand to a receptor in the absence of explicit structural
waters or any experimental restraints.

Standard docking workflow

1. Prepare a MOL2 file for the protein or nucleic acid target, taking into account the atom typing issues described
above for MOL2 file parsing. The recommendation is to prepare an all-atom MOL2 file and allow RxDock to
remove the non-polar hydrogens on-the-fly.

Important: Make sure that any non-standard atom names and substructure names are defined in $RBT_ROOT/
data/sf/RbtIonicAtoms.prm in order for the assignment of distributed formal charges to work correctly.
Make sure that the Tripos atom types are set correctly. RxDock uses the Tripos types to derive other critical
atomic properties such as atomic number and hybridisation state.

Note: The RxDock MOL2 parser was developed to read the CCDC/Astex protein .mol2 files, therefore this
validation set is the de facto standard reference. You should compare against the format of the CCDC/Astex
MOL2 files if you are in doubt as to whether a particular MOL2 file is suitable for RxDock.

2. Prepare a system definition file. At a minimum, you need to define the receptor parameters, the cavity mapping
parameters (SECTION MAPPER) and the cavity restraint penalty (SECTION CAVITY). Make sure you define the
RECEPTOR_FLEX parameter if you wish to activate sampling of terminal OH and NH3+ groups in the vicinity of
the docking site.

3. Generate the docking site (.as) file using rbcavity. You will require a reference bound ligand structure in the
coordinate space of the receptor if you wish to use the reference ligand cavity mapping method.

4. Prepare the ligand SD files you wish to dock, taking into account the atom typing issues described above for
SD file parsing. In particular, make sure that formal charges and formal bond order are defined coherently so
that there are no formal valence errors in the file. RxDock will report any perceived valence errors but will
dock the structures anyway. Note that RxDock never samples bond lengths, bond angles, ring conformations, or
non-rotatable bonds during docking so initial conformations should be reasonable.

5. Run a small test calculation to check that the system is defined correctly. For example, run rbdock from the
command line with a small ligand SD file, with the score-only protocol (-p score.prm) and with the -T 2
option to generate verbose output. The output will include receptor atom properties, ligand atom properties,
flexibility parameters, scoring function parameters and docking protocol parameters.

6. When satisfied, launch the full-scale calculations. A description of the various means of launching RxDock is
beyond the scope of this guide.

4.2.2 Tethered scaffold docking

In tethered scaffold docking, the ligand poses are restricted and forced to overlay the substructure coordinates of a
reference ligand. The procedure is largely as for standard docking, except that:

• Ligand SD files must be prepared with the rbtether utility to annotate each record with the matching substruc-
ture atom indices, and to transform the coordinates of each ligand so that the matching substructure coordinates
are overlaid with the reference substructure coordinates. This requires a Daylight SMARTS toolkit license.

• The system definition file should contain a SECTION LIGAND to define which of the the ligand degrees of free-
dom should be tethering to their reference values. Tethering can be applied to position, orientation and dihedral

4.2. Docking strategies 97

RxDock Documentation, Release 0.1.0

degrees of freedom independently. Note that the tethers are applied directly within the chromosome represen-
tation used by the search engine (where they affect the randomisation and mutation operators), and therefore
external restraint penalty functions to enforce the tethers are not required.

Important: The reference state values for each tethered degree of freedom are defined directly from the initial con-
formation of each ligand as read from the input SD file, and not from the reference SD file used by rbtether. This
is why the ligand coordinates are transformed by rbtether, such that each ligand record can act as its own reference
state. The reference SD file used by rbtether is not referred to by the docking calculation itself.

It follows from the above that tethered ligand docking is inappropriate for input ligand SD files that have not already
been transformed to the coordinate space of the docking site, either by rbtether or by some other means.

Example ligand definition for tethered scaffold

This definition will tether the position and orientation of the tethered substructure, but will allow free sampling of
ligand dihedrals.

SECTION LIGAND
TRANS_MODE TETHERED
ROT_MODE TETHERED
DIHEDRAL_MODE FREE
MAX_TRANS 1.0
MAX_ROT 30.0

END_SECTION

4.2.3 Docking with pharmacophore restraints

In pharmacophore restrained docking, ligand poses are biased to fit user-defined pharmacophore points. The bias
is introduced through the use of an external penalty restraint, which penalises docking poses that do not match the
pharmacophore restraints. Unlike tethered scaffold docking, there is no modification to the chromosome operators
themselves, hence the search can be inefficient, particularly for large numbers of restraints and/or for ligands with large
numbers of matching features. Pre-screening of ligands is based purely on feature counts, and not on geometric match
considerations.

The implementation supports both mandatory and optional pharmacophore restraints. The penalty function is calcu-
lated over all mandatory restraints, and over (any NOPT from N) of the optional restraints. For example, you may wish
to ensure that any 4 from 7 optional restraints are satisfied in the generated poses.

The procedure is largely as for standard docking, except that:

• You should prepare separate pharmacophore restraint files for the mandatory and optional restraints. Note that
optional restraints do not have to be defined, it is sufficient to only define at least one mandatory restraint.

• The system definition file should contain a SECTION PHARMA to add the pharmacophore restraint penalty to the
scoring function.

98 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

4.2.4 Docking with explicit waters

Explicit structural waters can be loaded from an external PDB file, independently from the main receptor model, by
adding a SECTION SOLVENT to the system definition file. The user has fine control over the flexibility of each water
molecule. A total of 9 flexibility modes are possible, in which the translational and rotational degrees of freedom of
each water can be set independently to FIXED, TETHERED, or FREE. Thus, for example, it is possible to define a water
with a fixed oxygen coordinate (presumably at a crystallographically observed position), but freely rotating such that
the orientation of the water hydrogens can be optimised by the search engine (and can be ligand-dependent).

Note: In the current implementation, solvent refers strictly to water molecules, and the format of the water PDB file
is very strictly defined. In future implementations it is anticipated that other, larger (and possibly flexible) molecules
will be loadable as solvent, and that other file formats will be supported.

Explicit waters workflow

1. Prepare a separate PDB file for the explicit waters according to the format prescribed (the section called Water
PDB file format).

2. Add a SECTION SOLVENT to the system definition file and define the relevant flexibility parameters (Table 3.10).
The minimal requirement is to define the FILE parameter.

3. Decide whether you wish to have different per-solvent flexibility modes (defined via the occupancy values and
temperature factor values in the PDB file (Table 3.14)), or whether you wish to have a single flexibility mode
applied to all waters (defined via the TRANS_MODE and ROT_MODE values in the SECTION SOLVENT of the receptor
.prm file).

Important: If you wish to use per-solvent flexibility modes (that is, you wish to set different modes for different
waters) make sure that you do not define TRANS_MODE or ROT_MODE entries in the SECTION SOLVENT as these
values will override the per-solvent values derived from the temperature factors in the PDB file.

4. If you have defined any waters with TETHERED translational or rotational degrees of freedom, define MAX_TRANS
and/or MAX_ROT values as appropriate (or accept the default values). The tethered ranges are applied to all
tethered waters and can not be defined on a per-solvent basis at present.

4.3 Multi-step protocol for HTVS

For high-throughput virtual screening (HTVS) applications, where computing performance is important, the recom-
mended RxDock protocol is to limit the search space (i.e. rigid receptor), apply the grid-based scoring function and/or
to use a multi-step protocol to stop sampling of poor scorers as soon as possible.

Using a multi-step protocol for the DUD system COMT, the computational time can be reduced by 7.5-fold without
affecting performance by:

1. Running 5 docking runs for all ligands;

2. ligands achieving a score of -22 or lower run 10 further runs;

3. for those ligands achieving a score of -25 or lower, continue up to 50 runs.

The optimal protocol is specific for each particular system and parameter-set, but can be identified with a purpose-built
script (see the Reference guide, section rbhtfinder).

Here you will find a tutorial to show you how to create and run a multi-step protocol for a HTVS campaign.

4.3. Multi-step protocol for HTVS 99

RxDock Documentation, Release 0.1.0

4.3.1 Step 1: Create the multi-step protocol

These are the instructions for running rbhtfinder:

1st) exhaustive docking of a small representative part of the
whole library.

2nd) Store the result of sdreport -t over that exhaustive dock.
in file that will be the input of this
script.

3rd) rbhtfinder <sdreport_file> <output_file> <thr1max> <thr1min> <ns1> <ns2>
<ns1> and <ns2> are the number of steps in stage 1 and in
stage 2. If not present, the default values are 5 and 15
<thrmax> and <thrmin> setup the range of thresholds that will
be simulated in stage 1. The threshold of stage 2 depends
on the value of the threshold of stage 1.
An input of -22 -24 will try protocols:

5 -22 15 -27
5 -22 15 -28
5 -22 15 -29
5 -23 15 -28
5 -23 15 -29
5 -23 15 -30
5 -24 15 -29
5 -24 15 -30
5 -24 15 -31

Output of the program is a 7 column values. First column
represents the time. This is a percentage of the time it
would take to do the docking in exhaustive mode, i.e.
docking each ligand 100 times. Anything
above 12 is too long.
Second column is the first percentage. Percentage of
ligands that pass the first stage.
Third column is the second percentage. Percentage of
ligands that pass the second stage.
The four last columns represent the protocol.
All the protocols tried are written at the end.
The ones for which time is less than 12%, perc1 is
less than 30% and perc2 is less than 5% but bigger than 1%
will have a series of *** after, to indicate they are good choices
WARNING! This is a simulation based in a small set.
The numbers are an indication, not factual values.

Step 1, substep 1: Exhaustive docking

Hence, as stated, the first step is to run an exhaustive docking of a representative part of the whole desired library to
dock.

For RxDock, exhaustive docking means doing 100 runs for each ligand, whereas standard docking means 50 runs for
each ligand:

$ rbdock -i INPUT.sd -o OUTPUT -r PRMFILE.prm -p dock.prm -n 100

100 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

Step 1, substep 2: sdreport summary

Once the exhaustive docking has finished, the results have to be saved in a single file and the output of the script
sdreport -t will be used as input for rbhtfinder:

$ sdreport -t OUTPUT.sd > sdreport_results.txt

Step 1, substep 3: rbhtfinder script

The last step is to run the rbhtfinder script (download sdreport_results.txt for testing):

$ rbhtfinder sdreport_results.txt htvs_protocol.txt -10 -20 7 25

Which will result in a file called htvs_protocol.txt.

The parameters are explained in the script instructions. They are not always the same and as they depend on the system,
you will probably have to play a little with different values in order to obtain good parameters sets (marked with ***
in the output).

This will happen when time is less than 12%, perc1 (number of ligands that pass the first filter) is less than 30% and
perc2 (number of ligands that pass the second filter) is less than 5% but bigger than 1%.

4.3.2 Step 2: Run docking with the multi-step protocol

The script finished with two good parameters sets:

TIME PERC1 PERC2 N1 THR1 N2 THR2
[...]
11.928, 27.461, 3.207, 7, -12, 25, -17 ***
[...]
10.508, 18.773, 1.511, 7, -13, 25, -18 ***
[...]

These parameters have to be adapted to a file with the HTVS protocol format that RxDock understands.

A template file looks as follows (THR1, THR2, N1 and N2 are the parameters found above):

3
if - <THR1> SCORE.INTER 1.0 if - SCORE.NRUNS <N1-1> 0.0 -1.0,
if - <THR2> SCORE.INTER 1.0 if - SCORE.NRUNS <N2-1> 0.0 -1.0,
if - SCORE.NRUNS 49 0.0 -1.0,
1
- SCORE.INTER -10,

It is divided in 2 sections, Running Filters and Writing Filters (defined by the lines with one number).

The first line (the number 3) indicates the number of lines in the Running Filters:

• The first filter is defined as follows: if the number of runs reaches N1 and the score is lower than THR1, continue
to filter 2, else stop with that ligand and go to the next one.

• The second filter is defined similar to the first one: if the number of runs reaches N2 and the score is lower than
THR2, continue to filter 3, else stop and go to the next ligand.

• If a ligand has passed the first two filters, continue up to 50 runs.

The fifth line (the number 1 after the three Running Filters) indicates the number of lines in the Writing Filters:

4.3. Multi-step protocol for HTVS 101

RxDock Documentation, Release 0.1.0

• Only print out all those poses where SCORE.INTER is lower than -10 (for avoiding excessive printing).

For the parameters obtained in the first Section of this tutorial (first line with ***), we will have to generate a file as
follows:

3
if - -12 SCORE.INTER 1.0 if - SCORE.NRUNS 6 0.0 -1.0,
if - -17 SCORE.INTER 1.0 if - SCORE.NRUNS 24 0.0 -1.0,
if - SCORE.NRUNS 49 0.0 -1.0,
1
- SCORE.INTER -10,

Please note that the parameters N1 and N2 are 7 and 25 but we write 6 and 24, respectively, as stated in the template.

Finally, run RxDock changing the flag -n XX for -t PROTOCOLFILE.txt:

$ rbdock -i INPUT.sd -o OUTPUT -r PRMFILE.prm -p dock.prm -t PROTOCOLFILE.txt

4.4 Calculating ROC curves

(Original entry published in CBDD Research Group Blog.)

Here you will find a a short tutorial about how to generate receiver operating characteristic (ROC) curves and other
statistics after running RxDock molecular docking (for other programs such as Vina or Glide, just a little modification
on the way dataforR_uq.txt file is interpreted will make it work, see below).

I assume all of you are familiar with what ROC curves are, what are they for and how they are made.

Just in case, a very brief summary would be:

• ROC curves are graphic representations of the relation existing between the sensibility and the specificity of a
test. It is generated by plotting the fraction of true positives out of the total actual positives versus the fraction of
false positives out of the total actual negatives.

• In our case, we will use it for checking whether a docking program is able to select active ligands with respect to
inactive ligands (decoys) and whether it is able to select these active ligands in the top % of a ranked database.

• R Library ROCR is mandatory (try with command install.packages("ROCR") in R before downloading
from source).

The example selected for this tutorial is a system from the DUD benchmark set, “hivpr” or “hiv protease”.

These are the files you will need (all can be downloaded in this Dropbox shared folder):

• List of active ligands (ligands.txt)

• List of inactive ligands (decoys.txt)

• Output file with the docked poses of each ligand with the corresponding docking scores (hivpr_all_results.
sd.gz)

• R script with all the R commands in this tutorial (ROC_curves.R)

Before getting into R, the resulted docked poses have to be filtered out for only having the best pose for each ligand
(the smallest score – or highest in negative value). To do so run:

gunzip hivpr_all_results.sd.gz
sdsort -n -s -fSCORE hivpr_all_results.sd | sdfilter -f'$_COUNT == 1' > hivpr_
→˓1poseperlig.sd

(continues on next page)

102 Chapter 4. User guide

http://www.ub.edu/cbdd/?q=content/how-calculate-roc-curves
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://rocr.bioinf.mpi-sb.mpg.de/
https://www.dropbox.com/sh/3cz5gnr8hz79kfa/AAAX0s0dG6ioPfAvUV7AJzqza?dl=0

RxDock Documentation, Release 0.1.0

(continued from previous page)

sdsort with -n and -s flags will sort internally each ligand by increasing
score and sdfilter will get only the first entry of each ligand.

sdreport -t hivpr_1poseperlig.sd | awk '{print $2,$3,$4,$5,$6,$7}' > dataforR_uq.txt
sdreport will print all the scores of the output in a tabular format and,
with command awk, we will format the results.

Note: sdsort and sdreport are really useful tools for managing sd formatted compound collections. They are very
user-friendly and free to download. They are provided along with RxDock software in the Download section of the
website.

This dataforR_uq.txt (also in the Dropbox folder) file must contain one entry per ligand with the docked scores
(what R will use to rank and plot the ROC curves).

4.4.1 R commands for generating ROC curves

Then, run the following commands in R for plotting the ROC curves:

load ROCR
library(ROCR);

load ligands and decoys
lig <- unique(read.table("ligands.txt")[,1]);
dec <- unique(read.table("decoys.txt")[,1]);

load data file from docking
uniqRes <- read.table("dataforR_uq.txt", header=T);

change colnames
colnames(uniqRes)[1]="LigandName";

add column with ligand/decoy info
uniqRes$IsActive <- as.numeric(uniqRes$LigandName %in% lig)

define ROC parameters
here INTER is selected to compare between ligands using SCORE.INTER
this could be changed for also running with other programs
predINTERuq <- prediction(uniqRes$INTER*-1, uniqRes$IsActive)
perfINTERuq <- performance(predINTERuq, 'tpr', 'fpr')

plot in jpg format with a grey line with theoretical random results
jpeg("hivpr_Rinter_ROC.jpg")
plot(perfINTERuq, main="hivpr - ROC Curves", col="blue")
abline(0, 1, col="grey")
dev.off()

Which will give us the following plot:

4.4. Calculating ROC curves 103

RxDock Documentation, Release 0.1.0

Afterwards, other useful statistics such as AUC or Enrichment factors can also be calculated:

AUC (area under the curve)
auc_rdock <- performance(predINTERuq, "auc")
auc.area_rdock <- slot(auc_rdock, "y.values")[[1]]
cat("AUC: \n")
cat(auc.area_rdock)
cat("\n\n")

AUC:
0.7700965

Enrichment Factors
EF_rdock <- perfINTERuq@y.values[[1]] / perfINTERuq@x.values[[1]]
EF_rdock_1 <- EF_rdock[which(perfINTERuq@x.values[[1]] > 0.01)[1]]
EF_rdock_20 <- EF_rdock[which(perfINTERuq@x.values[[1]] > 0.2)[1]]
cat("Enrichment Factor top 1%:\n")
cat(EF_rdock_1)
cat("\n\n")

Enrichment Factor top 1%:
11.11817

104 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

cat("Enrichment Factor top 20%:\n")
cat(EF_rdock_20)
cat("\n\n")

Enrichment Factor top 20%:
3.200686

Moreover, a good analysis of these curves is to re-plot them in semilogarithmic scale (x axis in logarithmic scale). This
way, one can focus on the early enrichment of the database and have a more detailed view of the selected actives in the
top % of all the ligands.

jpeg("hivpr_semilog_ROC.jpg")
rdockforsemilog=perfINTERuq@x.values[[1]]
rdockforsemilog[rdockforsemilog < 0.0005]=0.0005
plot(rdockforsemilog, perfINTERuq@y.values[[1]],type="l", xlab="False Positive Rate",␣
→˓ylab="True Positive Rate", xaxt="n", log="x", col="blue", main="hivpr - Semilog ROC␣
→˓Curves")
axis(1, c(0, 0.001, 0.01, 0.1, 1))
x<-seq(0, 1, 0.001)
points(x, x, col="gray", type="l")
dev.off()

Obtaining the following semi-logarithmic ROC curves:

4.4. Calculating ROC curves 105

RxDock Documentation, Release 0.1.0

4.5 Running docking jobs in parallel

In this short tutorial we will try to explain how to run RxDock on a computer with multiple CPUs or a cluster with
different calculation nodes.

Note: RxDock has not an MPI version to be run in parallel on a computation cluster. The approach RxDock uses
to parallelize the jobs is rather simple: as each molecule can be run in an independent way, the input structure file is
splitted in multiple files and each of them is run independently.

For this example, we have a set of 200 molecules (input.sdf) and we want to run it in 10 CPUs.

106 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

4.5.1 Step 1: Split molecules input file

To split an SDF file (RxDock needs the input in SDF format), there is a script in RxDock package called sdsplit that
does this.

$ sdsplit
Splits SD records into multiple files of equal size

Usage: sdsplit [-<RecSize>] [-o<OutputRoot>] [sdFiles]

-<RecSize> record size to split into (default = 1000 records)
-o<OutputRoot> Root name for output files (default = tmp)

If SD file list not given, reads from standard input

In our case, to split 200 molecules in 10 files (with 20 molecules each), we will have to run the following command
that will generate 10 files called split[1-10].sd:

sdsplit -20 -osplit input.sdf

Moreover, you can use the following code which allows you to specify the number of files you want instead of the
number of molecules in each file (e.g., save it in a file named splitMols.sh):

#!/bin/bash
#Usage: splitMols.sh <input> #Nfiles <outputRoot>
fname=$1
nfiles=$2
output=$3
molnum=$(grep -c '$$$$' $fname)
echo "$molnum molecules found"
echo "Dividing '$fname' into $nfiles files"
rawstep=`echo $molnum/$nfiles | bc -l`
let step=$molnum/$nfiles
if [! `echo $rawstep%1 | bc` == 0]; then

let step=$step+1;
fi;
sdsplit -$step -o$output $1

To get the same as in the first case, run:

splitMols.sh input.sdf 10 split

4.5.2 Step 2: Run docking jobs with splitted files

We have two options:

• Run docking jobs locally: send it over 10 CPUs.

• Run docking jobs using a job scheduler.

4.5. Running docking jobs in parallel 107

RxDock Documentation, Release 0.1.0

Option 1: Run docking jobs locally

To run RxDock (standard mode, 50 runs per ligand) in 10 CPUs, be sure that all the necessary files are located in the
working directory: receptor mol2 file, prm file, cavity as file, and reference ligand for cavity definition (if used) and
run the following command:

for file in split*sd; do rbdock -i $file -o ${file%%.*}_out -r <PRMFILE> -p dock.prm -n␣
→˓50 &; done

This will send 10 independent docking jobs and will eventually generate 10 output files split[1-10]_out.sd.

So that’s it, you are done!

Option 2: Run docking jobs with job scheduler

Same as in Option 1, but instead of running the command above, you have to create a queueing submission file for each
of the files and submit them to the queue.

There are several options to use as a job scheduler. In our particular case, we use SGE and a typical submission file
looks like this:

#!/bin/sh
#$ -N rdock_job1
#$ -S /bin/sh
#$ -q serial
#$ -o out.log
#$ -e err.log
#-cwd
export RBT_ROOT=/data/soft/rdock/2006.1
export LD_LIBRARY_PATH=$RBT_ROOT/lib
#next is optional
export RBT_HOME=/path/to/job/files

These are the comands to be executed.
cd /path/to/job/files
$RBT_ROOT/bin/rbdock -i <INPUT>.sd -o <OUTPUT> -r <PRMFILE> -p dock.prm -n 50

This is highly recommended for running docking jobs of big molecule libraries.

For example, to run a Virtual Screening Campaign of a million compounds, you can split the molecules in 10000 files
in order to have individual files with 100 molecules each and use a job scheduler to control their execution.

4.6 Pharmacophoric restraints

In this short tutorial you will find how to prepare and run Docking with pharmacophoric restraints.

Note: RxDock assumes the user knows how to compute and find pharmacophores. The user will need the coordinates,
tolerance and type of restraint, which will be the input for RxDock.

108 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

4.6.1 Step 1: Pharmacophoric restraints file

The first step is to create the input file for RxDock with the necessary info.

As you can find in the Reference guide, this file needs one line per pharmacophore with the next structure (each element
separated with a space):

x y z (coords of restraint centre), tolerance radius (in Angstroms), restraint type␣
→˓(string)

The pharmacophore types accepted by RxDock are the following:

String Description Matches
Any Any atom Any non-hydrogen atom
Don H-Bond donor Any neutral donor hydrogen
Acc H-Bond acceptor Any neutral acceptor
Aro Aromatic Any aromatic ring centre (pseudo atom)
Hyd Hydrophobic Any C or S sp3, any C od S not bonded to O sp2, any Cl, Br, I
Hal Hydrophobic, aliphatic Subset of Hyd, sp3 atoms only
Har Hydrophobic, aromatic Subset of Hyd, aromatic atoms only
Ani Anionic Any atom with negative distributed formal charge
Cat Cationic Any atom with positive distributed formal charge

A sample file (pharma.restr) has been created containing two restraints (Acc and Hyd) with a tolerance radius of 2
and located at points (-1.75, 1.25, 0.25) and (-2, 2, -3) respectively.

-1.75 1.25 0.25 2.0 Acc
-2.00 2.00 -3.0 2.0 Hyd

4.6.2 Step 2: RxDock system definition file

The second and final step is to modify the system definition file (FILE.prm) to take into account the defined restraints.

Just add a SECTION PHARMA (see the Reference guide for more info) with the following lines:

SECTION PHARMA
SCORING_FUNCTION RbtPharmaSF
WEIGHT 1.0
CONSTRAINTS_FILE pharma.restr

END_SECTION

With the FILE.prm finally being:

RBT_PARAMETER_FILE_V1.00
TITLE title

RECEPTOR_FILE receptor_file.mol2
RECEPTOR_FLEX 3.0

##
CAVITY DEFINITION: REFERENCE LIGAND METHOD
##

(continues on next page)

4.6. Pharmacophoric restraints 109

RxDock Documentation, Release 0.1.0

(continued from previous page)

SECTION MAPPER
SITE_MAPPER RbtLigandSiteMapper
REF_MOL reference.sdf
RADIUS 5.0
SMALL_SPHERE 1.0
MIN_VOLUME 100
MAX_CAVITIES 1
VOL_INCR 0.0
GRIDSTEP 0.5

END_SECTION

############################
CAVITY RESTRAINT PENALTY
############################
SECTION CAVITY

SCORING_FUNCTION RbtCavityGridSF
WEIGHT 1.0

END_SECTION

#############################
PHARMACOPHORIC RESTRAINTS
#############################
SECTION PHARMA

SCORING_FUNCTION RbtPharmaSF
WEIGHT 1.0
CONSTRAINTS_FILE pharma.restr

END_SECTION

Note: This FILE.prm is an example file for the sake of the tutorial. The point here is to clarify how to define
pharmacophoric restraints and how to configure RxDock to take them into account.

Finally, when running RxDock, the user can check if the program writes similar lines as the following to be sure that
the restraints have been correctly read.

[...]
RbtPharmaSF: Reading mandatory ph4 constraints from /path/to/pharma.restr
(-1.75, 1.25, 0.25) 2.0 Acc
(-2.0, 2.0, -3.0) 2.0 Hyd
RbtPharmaSF: No optional ph4 constraints file found
[...]

110 Chapter 4. User guide

RxDock Documentation, Release 0.1.0

4.6.3 Step 3: Optional constraints

This tutorial is an example for mandatory constraints. Optional constraints can also be configured in a different file
(same format as pharma.restr created above). The SECTION PHARMA in the RxDock System Configuration File should
be modified as follows (NOPT=1 means that only one of the optional restraints has to be met):

SECTION PHARMA
SCORING_FUNCTION RbtPharmaSF
WEIGHT 1.0
CONSTRAINTS_FILE pharma.restr
OPTIONAL_FILE optional_pharma.restr
NOPT 1

END_SECTION

Tip: For more information about the pharmacophoric restraints and the parameters in SECTION PHARMA, please go
to the Reference guide.

4.6. Pharmacophoric restraints 111

RxDock Documentation, Release 0.1.0

112 Chapter 4. User guide

CHAPTER

FIVE

DEVELOPER GUIDE

5.1 Target platforms

5.1.1 Primary and secondary target platforms

Primary target platforms are:

• Linux on AMD64 (x86-64) with the GCC compiler

• FreeBSD on AMD64 with the Clang compiler

These platforms are used for RxDock development on an ongoing basis. Specifically, the target operating system and
compiler versions are the latest long-term supported releases of the main Linux distributions (e.g. Red Hat Enterprise
Linux and CentOS, SUSE Linux Enterprise and openSUSE Leap, Ubuntu) and the latest point release of FreeBSD-
STABLE.

Secondary target platforms are:

• macOS on x86-64 with Xcode (Clang compiler)

• Windows on x86-64 with MinGW (GCC compiler)

The feature set on the secondary target platforms will match the primary platforms and bugs that affect these platforms
will be treated as release blockers.

5.1.2 Tertiary and quaternary target platforms

Tertiary target platforms are:

• Windows on x86-64 with MSVC compiler

• Linux on POWER8 and POWER9 (both big- and little-endian: power64, ppc64, power64le, ppc64le) with GCC
and Clang compilers

• other modern Unix-like operating systems (e.g. Illumos) with the GCC and Clang compilers

• other compilers on Linux, FreeBSD, macOS, and Windows (e.g. PGI)

Bugs that affect the tertiary target platforms will be fixed if feasible. The care will be taken to make sure that the code
compiles and that the basic functionality works. Realistically, most of the features available on the primary and the
secondary target platforms will be provided on these platforms as well, but no promises will be made in advance.

Quaternary target platforms are:

• Linux, FreeBSD, macOS, and Windows on 32-bit x86

• Linux and FreeBSD on ARMv7 (armhf, armhfp) and ARMv8 (arm64, aarch64)

113

RxDock Documentation, Release 0.1.0

• Linux and FreeBSD on POWER7 and older processors

Bugs that affect the quaternary target platforms will be considered for fixing if an interested user contributes a patch.

5.2 Build system

RxDock uses the Meson build system.

5.2.1 Rationale

Meson is a fast and user-friendly build system, and therefore building and testing of RxDock is now straightforward.
But it was not always so simple.

rDock built using tmake

When we stumbled upon rDock back in April 2019, the first thing we noticed was its build process that required
tmake command. As you might know, tmake was developed by Trolltech (now Qt Company) during the 1990s as a
build system for cross-platform applications, specifically Qt Toolkit and applications using it. It was still somewhat
popular in the early 2000s, but afterward, it got superseded by qmake and later Qbs. Well, as you might observe, rDock
never migrated away from tmake. Luckily, tmake could still run on modern Linux distributions so building rDock was
possible.

Once we got rDock to build, albeit, with thousands of lines of warnings (more on that in the future posts), we decided
that the first step is replacing tmake. The replacement should be some actively maintained build system, but we also
wanted it to be cross-platform just like tmake as we intended to expand the number of supported platforms. rDock as
we found it ran only on Linux, but after forking as RxDock we ported it to FreeBSD, Solaris, and Windows over a few
months.

Aside from portability, we also wanted our build system to be easy to use; one wants to spend time developing software,
not writing build scripts. In the process of choosing the replacement for tmake, we evaluated CMake, Waf, and Meson.

Choosing the build system

There is the old saying that Linux is user friendly, but picky who its friends are. CMake is similar, and unless you
can sing precisely quoted passages from CGold when woken up in the middle of the night, you are not in that circle of
friends (sorry to disappoint). To be fair, the syntax of the CMakeLists.txt build configuration files has gotten simpler
over time, but CMake is still a lot more painful to use compared to Waf and Meson. Furthermore, guides like An
Introduction to Modern CMake are a great resource if, for whatever reason, CMake is the way you want to go.

Waf is a mature build system, but it’s nowhere near as big and popular as CMake. Vedran Miletić worked with it quite
a bit while developing ns-3 during his Ph.D. days so it was an attractive option for RxDock as well. Waf’s build scripts
are Python scripts so it’s very flexible in terms of what it can do while being easy to use. In summary, we would likely
have picked Waf over CMake if Meson didn’t exist. Despite being somewhat niche, Waf is still used by important
projects such as mpv and Samba.

Finally, Meson, a build system originally developed by Jussi Pakkanen as a hobby since 2012. Jussi carefully evaluated
the existing solutions and concluded that building software can be done better (xkcd about standards comes to our mind
and critics of Meson agree in that regard). A good overview of Meson is the presentation at Linux.conf.au in 2015,
where the author credits SCons, GYP, and qmake/Qbs for inspiration. The usage of Meson started to grow steadily
after that presentation: it started building GStreamer in 2016 and it was adopted by GNOME in 2017. It’s no longer a
niche tool as it’s used by 100+ other projects today, including some big names such as Mesa, Linux Vendor Firmware
Service, systemd, and DXVK. DOSBox is switching to Meson at the time of writing in the staging branch.

114 Chapter 5. Developer guide

https://mesonbuild.com/
https://mesonbuild.com/
http://tmake.sourceforge.net/
https://www.qt.io/company
https://www.qt.io/product
https://en.wikipedia.org/wiki/Qmake
https://en.wikipedia.org/wiki/Qbs_(build_tool)
https://cmake.org/
https://waf.io/
https://mesonbuild.com/
https://devrant.com/rants/818086/linux-is-user-friendly-its-just-very-picky-about-who-its-friends-are
https://cgold.readthedocs.io/
https://cliutils.gitlab.io/modern-cmake/
https://cliutils.gitlab.io/modern-cmake/
https://waf.io/
https://www.nsnam.org/
https://mpv.io/
https://www.samba.org/
https://mesonbuild.com/
https://twitter.com/jpakkane
https://youtu.be/gHdTzdXkhRY
https://xkcd.com/927/
https://www.rojtberg.net/1481/do-not-use-meson/
https://youtu.be/KPi0AuVpxLI
https://scons.org/
https://gyp.gsrc.io/
https://gstconf.ubicast.tv/videos/done-in-60-seconds-a-new-build-system-for-gstreamer/
https://blogs.gnome.org/mclasen/2017/04/20/meson-considerations/
https://mesonbuild.com/Users.html
https://www.mesa3d.org/
https://fwupd.org/
https://fwupd.org/
https://systemd.io/
https://github.com/doitsujin/dxvk
https://github.com/dosbox-staging/dosbox-staging/issues/854

RxDock Documentation, Release 0.1.0

The joy of working with Meson

The reason why we picked Meson among the three build systems was the ease of use. It took just a few hours and 120
lines of the meson.build build configuration file (more than a third of that being the names of the source files) to get
RxDock building and running, and tests came soon afterward. This tweet from Vedran Miletić captures some of the
initial excitement coming from replacing tmake and custom Makefiles with Meson.

Unlike Waf, the syntax isn’t Python (there’s a good reason for that), but it’s very much Python-like and therefore easy to
get started. At CppCon 2018, Jussi told the audience to just look at the build configuration file for 10 seconds without
any prior knowledge of the Meson syntax; it’s just so obvious what it does. The documentation is very good, especially
its coverage of common use cases. You get reproducible builds for free. IDE integration is getting there, e.g. Qt Creator
added Meson support in summer 2020 and Visual Studio Code had it for a while.

It has been almost two years at the time of writing since we switched to Meson and we are very happy with how it builds
RxDock. The Meson community is very active and therefore we expect to continue using Meson to build RxDock for
the foreseeable future.

5.3 Coding standards

RxDock is written using the LLVM style C++ code and formatted using ClangFormat.

5.3.1 LLVM coding standards and additions

The coding standards are documented in LLVM Coding Standards. With regards to that document, RxDock has made
the following changes in the coding standards:

• Standard C++11 is used instead of C++14. In the near future the switch will be made to C++17.

• Implementation file extension should be .cxx instead of .cpp.

• Variable names should use camelBack instead of CamelCase and member variables should be prefixed with m_
(similar to the proposed Variable Names Plan in LLVM).

5.3.2 See also

Helpful online sources of knowledge about C++:

• News, Status and Discussion about Standard C++

• C++ reference

• C++ subreddit (/r/cpp)

Particularly useful books about software design, algorithms, and programming:

1. Code Complete by Steve McConnel, published by Microsoft Press in 2004.

2. Metaheuristics: From Design to Implementation by El-Ghazali Talbi, published by Wiley in 2009.

3. Effective Modern C++ by Scott Meyers, published by O’Reilly in 2014. Also interesting and useful are “Effective
C++”, “More Effective C++”, and “Effective STL” by the same author.

The future development will switch from the use of C++11 to the use of C++17. A very good book covering the new
features in C++17 is C++17 in Detail by Bartlomiej Filipek, published by Leanpub in 2017. The blog post C++17
Features is a shorter version.

5.3. Coding standards 115

https://twitter.com/VedranMiletic/status/1121310731184611328
https://mesonbuild.com/Syntax.html
https://mesonbuild.com/FAQ.html#why-is-meson-not-just-a-python-module-so-i-could-code-my-build-setup-in-python
https://cppcon.org/cppcon-2018-program/
https://youtu.be/SCZLnopmYBM?t=300
https://mesonbuild.com/howtox.html
https://mesonbuild.com/Reproducible-builds.html
https://doc.qt.io/qtcreator/creator-project-meson.html
https://www.qt.io/blog/qt-creator-4.13-released
https://marketplace.visualstudio.com/items?itemName=asabil.meson
https://github.com/mesonbuild/meson/graphs/contributors
https://clang.llvm.org/docs/ClangFormatStyleOptions.html
https://clang.llvm.org/docs/ClangFormat.html
https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/Proposals/VariableNames.html
https://isocpp.org/
https://cppreference.com/
https://www.reddit.com/r/cpp/
https://www.microsoftpressstore.com/store/code-complete-9780735619678
https://stevemcconnell.com/
https://www.wiley.com/en-us/Metaheuristics%3A+From+Design+to+Implementation+-p-9780470278581
http://www.lifl.fr/~talbi/
https://www.oreilly.com/library/view/effective-modern-c/9781491908419/
https://www.aristeia.com/
https://leanpub.com/cpp17indetail
https://www.bfilipek.com/
https://www.bfilipek.com/2017/01/cpp17features.html
https://www.bfilipek.com/2017/01/cpp17features.html

RxDock Documentation, Release 0.1.0

5.4 Documentation

5.4.1 General documentation

General documentation, including man pages, is built using Sphinx.

5.4.2 Codebase documentation

The codebase is documented using Doxygen.

5.5 Versioning

5.5.1 Version control system

RxDock source code is kept in a Git repository.

5.5.2 Version numbering

RxDock uses semantic versioning.

116 Chapter 5. Developer guide

http://www.sphinx-doc.org/
http://www.doxygen.nl/
https://semver.org/

CHAPTER

SIX

SUPPORT

If you are having some trouble regarding usage, compilation, development or anything else, you can use different
options to ask for support.

6.1 Mailing lists

If you are having any kind of trouble, you have any questions or anything related to general usage of the program please
search and use our the discussion section of RxDock channel on Telegram.

6.2 Issue tracker

Mostly for developers and code-related problems. If you find a bug, please report it in issues section in RxDock GitLab
project.

117

https://t.me/rxdock
https://gitlab.com/rxdock/rxdock/-/issues
https://gitlab.com/rxdock/rxdock/-/issues

RxDock Documentation, Release 0.1.0

118 Chapter 6. Support

BIBLIOGRAPHY

[rDock2014] Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A. B., Juhos S., et al. (2014)
rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids.
PLoS Comput Biol 10(4): e1003571. doi:10.1371/journal.pcbi.1003571

[RiboDock2004] Morley, S. D. and Afshar, M. (2004) Validation of an empirical RNA-ligand scoring func-
tion for fast flexible docking using RiboDock®. J Comput Aided Mol Des, 18: 189–208.
doi:10.1023/B:JCAM.0000035199.48747.1e

[ASTEX2007] Hartshorn, M.J., Verdonk, M.L., Chessari, G., Brewerton, S.C., Mooij, W.T.M., Mortenson, P.N., and
Murray, C.W. (2007). Diverse, High-Quality Test Set for the Validation of Protein-Ligand Docking Per-
formance. J. Med. Chem. 50, 726–741. doi:10.1021/jm061277y

[GOLD2005] Verdonk, M.L., Chessari, G., Cole, J.C., Hartshorn, M.J., Murray, C.W., Nissink, J.W.M., Taylor, R.D.,
and Taylor, R. (2005). Modeling Water Molecules in Protein-Ligand Docking Using GOLD. J. Med.
Chem. 48, 6504–6515. doi:10.1021/jm050543p

[PDBbind2004] Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). The PDBbind Database: Collection of Binding
Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures. J. Med. Chem. 47,
2977–2980. doi:10.1021/jm030580l

[WSAS2001] Wang, J., Wang, W., Huo, S., Lee, M., and Kollman, P.A. (2001). Solvation Model Based on Weighted
Solvent Accessible Surface Area. J. Phys. Chem. B 105, 5055–5067. doi:10.1021/jp0102318

[CORINA1990] Gasteiger, J., Rudolph, C., and Sadowski, J. (1990). Automatic generation of 3D-atomic coordinates
for organic molecules. Tetrahedron Computer Methodology 3, 537–547. 10.1016/0898-5529(90)90156-3

[RASASA1988] Hasel, W., Hendrickson, T.F., and Still, W.C. (1988). A rapid approximation to the solvent ac-
cessible surface areas of atoms. Tetrahedron Computer Methodology 1, 103–116. doi:10.1016/0898-
5529(88)90015-2

119

https://doi.org/10.1371/journal.pcbi.1003571
https://doi.org/10.1023/B:JCAM.0000035199.48747.1e
https://doi.org/10.1021/jm061277y
https://doi.org/10.1021/jm050543p
https://doi.org/10.1021/jm030580l
https://doi.org/10.1021/jp0102318
https://doi.org/10.1016/0898-5529(90)90156-3
https://doi.org/10.1016/0898-5529(88)90015-2
https://doi.org/10.1016/0898-5529(88)90015-2

	About
	Download
	Features
	History
	License
	GNU LESSER GENERAL PUBLIC LICENSE
	0. Additional Definitions.
	1. Exception to Section 3 of the GNU GPL.
	2. Conveying Modified Versions.
	3. Object Code Incorporating Material from Library Header Files.
	4. Combined Works.
	5. Combined Libraries.
	6. Revised Versions of the GNU Lesser General Public License.

	Contributor concordat
	Contributor Code of Conduct
	Code of Merit

	References

	Getting started guide
	Overview
	Quick and dirty installation
	Installation in 3 steps
	Step 1
	Step 2
	Step 3

	Installation tutorial
	Installing and setting up RxDock

	Prerequisites
	Compilers
	Required packages

	Unpacking the distribution files
	Example unpacking procedure

	Building
	Customising the tmake template for a build target
	Build procedure
	Compile
	Test
	Cleanup (optional)

	Validation experiments
	Binding mode prediction in proteins
	Binding mode prediction in RNA
	Database enrichment (actives vs. decoys – for HTVS)

	Reference guide
	Preface
	Acknowledgements
	Introduction
	Configuration
	Input file locations
	Launching executables

	Cavity mapping
	Two sphere method
	Reference ligand method

	Scoring functions
	Component scoring functions
	van der Waals potential
	Empirical attractive and repulsive polar potentials
	Solvation potential
	Dihedral potential

	Intermolecular scoring functions under evaluation
	Training sets
	Scoring functions design
	Scoring functions validation

	Code implementation
	References

	Docking protocol
	Protocol summary
	Pose generation
	Genetic algorithm
	Monte Carlo
	Simplex

	Code implementation
	Standard RxDock docking protocol (dock.prm)

	System definition file
	Receptor definition
	Ligand definition
	Solvent definition
	Cavity mapping
	Cavity restraint
	Pharmacophore restraints
	NMR restraints
	Example system definition files

	Molecular files and atom typing
	Atomic properties
	Difference between formal charge and distributed formal charge
	Parsing a MOL2 file
	Parsing an SD file
	Assigning distributed formal charges to the receptor

	File formats
	.prm file format
	Water PDB file format
	Pharmacophore restraints file format

	Programs
	Programs reference
	rbdock
	Simple exhaustive docking
	High-throughput docking, option 1
	High throughput docking, option 2
	Automated ligand protonation/deprotonation
	Control of ligand non-polar hydrogens

	rbcavity
	Exploration of cavity mapping parameters
	Visualisation of cavities
	Writing the docking site (.as) file
	Analysis of cavity atoms
	Miscellaneous options

	rbcalcgrid
	make_grid.csh
	rbconvgrid
	rbmoegrid
	sdrmsd
	With two arguments
	With fitting
	Output a SD file

	sdtether
	sdfilter
	sdreport
	sdsplit
	sdsort
	sdmodify
	rbhtfinder
	rblist

	Appendix

	User guide
	Docking in 3 steps
	Step 1: System definition
	Step 2: Cavity generation
	Step 3: Docking

	Docking strategies
	Standard docking
	Standard docking workflow

	Tethered scaffold docking
	Example ligand definition for tethered scaffold

	Docking with pharmacophore restraints
	Docking with explicit waters
	Explicit waters workflow

	Multi-step protocol for HTVS
	Step 1: Create the multi-step protocol
	Step 1, substep 1: Exhaustive docking
	Step 1, substep 2: sdreport summary
	Step 1, substep 3: rbhtfinder script

	Step 2: Run docking with the multi-step protocol

	Calculating ROC curves
	R commands for generating ROC curves

	Running docking jobs in parallel
	Step 1: Split molecules input file
	Step 2: Run docking jobs with splitted files
	Option 1: Run docking jobs locally
	Option 2: Run docking jobs with job scheduler

	Pharmacophoric restraints
	Step 1: Pharmacophoric restraints file
	Step 2: RxDock system definition file
	Step 3: Optional constraints

	Developer guide
	Target platforms
	Primary and secondary target platforms
	Tertiary and quaternary target platforms

	Build system
	Rationale
	rDock built using tmake
	Choosing the build system
	The joy of working with Meson

	Coding standards
	LLVM coding standards and additions
	See also

	Documentation
	General documentation
	Codebase documentation

	Versioning
	Version control system
	Version numbering

	Support
	Mailing lists
	Issue tracker

	Bibliography

